Integration of Tracer Test Data to Refine Geostatistical Hydraulic Conductivity Fields Using Sequential Self-Calibration Method

2007 ◽  
Vol 18 (3) ◽  
pp. 242-256 ◽  
Author(s):  
B HU ◽  
J XIAOWEI ◽  
W LI
SPE Journal ◽  
2018 ◽  
Vol 23 (02) ◽  
pp. 449-466 ◽  
Author(s):  
Siavash Hakim Elahi ◽  
Behnam Jafarpour

Summary Hydraulic fracturing is performed to enable production from low-permeability and organic-rich shale-oil/gas reservoirs by stimulating the rock to increase its permeability. Characterization and imaging of hydraulically induced fractures is critical for accurate prediction of production and of the stimulated reservoir volume (SRV). Recorded tracer concentrations during flowback and historical production data can reveal important information about fracture and matrix properties, including fracture geometry, hydraulic conductivity, and natural-fracture density. However, the complexity and uncertainty in fracture and reservoir descriptions, coupled with data limitations, complicate the estimation of these properties. In this paper, tracer-test and production data are used for dynamic characterization of important parameters of hydraulically fractured reservoirs, including matrix permeability and porosity, planar-fracture half-length and hydraulic conductivity, discrete-fracture-network (DFN) density and conductivity, and fracture-closing (conductivity-decline) rate during production. The ensemble Kalman filter (EnKF) is used to update uncertain model parameters by sequentially assimilating first the tracer-test data and then the production data. The results indicate that the tracer-test and production data have complementary information for estimating fracture half-length and conductivity, with the former being more sensitive to hydraulic conductivity and the latter being more affected by fracture half-length. For characterization of DFN, a stochastic representation is adopted and the parameters of the stochastic model along with matrix and hydraulic-fracture properties are updated. Numerical examples are presented to investigate the sensitivity of the observed production and tracer-test data to fracture and matrix properties and to evaluate the EnKF performance in estimating these parameters.


1999 ◽  
Vol 30 (4-5) ◽  
pp. 333-360 ◽  
Author(s):  
Larry McKay ◽  
Johnny Fredericia ◽  
Melissa Lenczewski ◽  
Jørn Morthorst ◽  
Knud Erik S. Klint

A field experiment shows that rapid downward migration of solutes and microorganisms can occur in a fractured till. A solute tracer, chloride, and a bacteriophage tracer, PRD-1, were added to groundwater and allowed to infiltrate downwards over a 4 × 4 m area. Chloride was detected in horizontal filters at 2.0 m depth within 3-40 days of the start of the tracer test, and PRD-1 was detected in the same filters within 0.27 - 27 days. At 2.8 m depth chloride appeared in all the filters, but PRD-1 appeared in only about one-third of the filters. At 4.0 m depth chloride appeared in about one-third of the filters and trace amounts of PRD-1 were detected in only 2 of the 36 filters. Transport rates and peak tracer concentrations decreased with depth, but at each depth there was a high degree of variability. The transport data is generally consistent with expectations based on hydraulic conductivity measurements and on the observed density of fractures and biopores, both of which decrease with depth. Transport of chloride was apparently retarded by diffusion into the fine-grained matrix between fractures, but the rapid transport of PRD-1, with little dispersion, indicates that it was transported mainly through the fractures.


Measurement ◽  
2021 ◽  
Vol 174 ◽  
pp. 109067
Author(s):  
Zhi-Feng Lou ◽  
Li Liu ◽  
Ji-Yun Zhang ◽  
Kuang-chao Fan ◽  
Xiao-Dong Wang

Sign in / Sign up

Export Citation Format

Share Document