Investigation on the preparation of Si/mullite/Yb2Si2O7 environmental barrier coatings onto silicon carbide

2010 ◽  
Vol 28 (3) ◽  
pp. 399-402 ◽  
Author(s):  
Yue XU ◽  
Zhaotong YAN
Author(s):  
Tania Bhatia ◽  
Venkat Vedula ◽  
Harry Eaton ◽  
Ellen Sun ◽  
John Holowczak ◽  
...  

Environmental barrier coatings (EBCs) are being developed for silicon carbide (SiC) based composites and monolithic silicon nitride (Si3N4) to protect against the accelerated oxidation and subsequent silica volatilization in high temperature, high-pressure steam environments encountered in gas turbine engines. While EBCs for silicon carbide (EBCSiC) have been demonstrated in combustor liner applications, efforts are ongoing in the development of EBC systems for silicon nitride (EBCSiN). The challenges of adapting EBCSiC to monolithic Si3N4 are discussed in this paper. Progress in the area of EBCSiN including development and performance during field tests and tests simulating engine conditions are reviewed.


Author(s):  
Ellen Y. Sun ◽  
Harry E. Eaton ◽  
John E. Holowczak ◽  
Gary D. Linsey

Environmental barrier coatings (EBCs) are required for applications of silicon nitride (Si3N4) and silicon carbide (SiC) based materials in gas turbine engines because of the accelerated oxidation of Si3N4 and SiC and subsequent volatilization of silica in the high temperature high-pressure steam environment. EBC systems for silicon carbide fiber reinforced silicon carbide ceramic matrix composites (SiC/SiC CMC’s) were first developed and have been demonstrated via long-term engine tests. Recently, studies have been carried out at United Technologies Research Center (UTRC) to understand the temperature capability of the current celsian-based EBC systems and its suitability for silicon nitride ceramics concerning thermal expansion mismatch between the EBC coating and silicon nitride substrates. This paper will present recent progress in improving the temperature capability of the celsian –based EBC systems and discuss their effectiveness for silicon nitride.


Author(s):  
Tania Bhatia ◽  
Harry Eaton ◽  
Ellen Sun ◽  
Thomas Lawton ◽  
Venkat Vedula

Environmental barrier coatings (EBCs) are being developed for silicon carbide fiber reinforced silicon carbide matrix (SiC/SiC) composites to protect against accelerated oxidation and subsequent silica volatilization in high temperature, high-pressure steam environments encountered in gas turbine engines. Engine testing of three-layer barium strontium aluminosilicate (BSAS) has demonstrated a life of over 15,000 hours in a combustor liner application at a nominal temperature of 2200°F (1204°C). The engine field tests have shown that useful engine life is limited by BSAS recession and potential eutectic reactions between BSAS and silica. BSAS based coatings have also been shown to survive severe thermal gradient burner rig tests with 2700°F (1482°C) surface temperature and a 300°F (167°C) gradient through the coating. Promising EBC candidates for longer life and/or higher temperature applications include strontium aluminosilicate (SAS) based coatings.


2010 ◽  
Vol 205 (2) ◽  
pp. 258-265 ◽  
Author(s):  
Sivakumar Ramasamy ◽  
Surendra N. Tewari ◽  
Kang N. Lee ◽  
Ramakrishna T. Bhatt ◽  
Dennis S. Fox

2015 ◽  
Vol 11 (2) ◽  
pp. 238-272 ◽  
Author(s):  
Mica Grujicic ◽  
Jennifer Snipes ◽  
Ramin Yavari ◽  
S. Ramaswami ◽  
Rohan Galgalikar

Purpose – The purpose of this paper is to prevent their recession caused through chemical reaction with high-temperature water vapor, SiC-fiber/SiC-matrix ceramic-matrix composite (CMC) components used in gas-turbine engines are commonly protected with so-called environmental barrier coatings (EBCs). EBCs typically consist of three layers: a top thermal and mechanical protection coat; an intermediate layer which provides environmental protection; and a bond coat which assures good EBC/CMC adhesion. The materials used in different layers and their thicknesses are selected in such a way that the coating performance is optimized for the gas-turbine component in question. Design/methodology/approach – Gas-turbine engines, while in service, often tend to ingest various foreign objects of different sizes. Such objects, entrained within the gas flow, can be accelerated to velocities as high as 600 m/s and, on impact, cause substantial damage to the EBC and SiC/SiC CMC substrate, compromising the component integrity and service life. The problem of foreign object damage (FOD) is addressed in the present work computationally using a series of transient non-linear dynamics finite-element analyses. Before such analyses could be conducted, a major effort had to be invested toward developing, parameterizing and validating the constitutive models for all attendant materials. Findings – The computed FOD results are compared with their experimental counterparts in order to validate the numerical methodology employed. Originality/value – To the authors’ knowledge, the present work is the first reported study dealing with the computational analysis of the FOD sustained by CMCs protected with EBCs.


Sign in / Sign up

Export Citation Format

Share Document