Development and Evaluation of Environmental Barrier Coatings for Si-Based Ceramics

Author(s):  
Tania Bhatia ◽  
Venkat Vedula ◽  
Harry Eaton ◽  
Ellen Sun ◽  
John Holowczak ◽  
...  

Environmental barrier coatings (EBCs) are being developed for silicon carbide (SiC) based composites and monolithic silicon nitride (Si3N4) to protect against the accelerated oxidation and subsequent silica volatilization in high temperature, high-pressure steam environments encountered in gas turbine engines. While EBCs for silicon carbide (EBCSiC) have been demonstrated in combustor liner applications, efforts are ongoing in the development of EBC systems for silicon nitride (EBCSiN). The challenges of adapting EBCSiC to monolithic Si3N4 are discussed in this paper. Progress in the area of EBCSiN including development and performance during field tests and tests simulating engine conditions are reviewed.

Author(s):  
Ellen Y. Sun ◽  
Harry E. Eaton ◽  
John E. Holowczak ◽  
Gary D. Linsey

Environmental barrier coatings (EBCs) are required for applications of silicon nitride (Si3N4) and silicon carbide (SiC) based materials in gas turbine engines because of the accelerated oxidation of Si3N4 and SiC and subsequent volatilization of silica in the high temperature high-pressure steam environment. EBC systems for silicon carbide fiber reinforced silicon carbide ceramic matrix composites (SiC/SiC CMC’s) were first developed and have been demonstrated via long-term engine tests. Recently, studies have been carried out at United Technologies Research Center (UTRC) to understand the temperature capability of the current celsian-based EBC systems and its suitability for silicon nitride ceramics concerning thermal expansion mismatch between the EBC coating and silicon nitride substrates. This paper will present recent progress in improving the temperature capability of the celsian –based EBC systems and discuss their effectiveness for silicon nitride.


Author(s):  
Tania Bhatia ◽  
G. V. Srinivasan ◽  
Sonia V. Tulyani ◽  
Robert A. Barth ◽  
Venkat R. Vedula ◽  
...  

Environmental barrier coatings (EBCs) are being developed for silicon carbide (SiC) based composites and monolithic silicon nitride (Si3N4) to protect against the accelerated oxidation and subsequent silica volatilization in high temperature high-pressure steam environments encountered in gas turbine engines. It has been found that the application of EBCs developed for SiC-based composites (EBCSiC) to monolithic silicon nitride results in a loss of room temperature mechanical strength of the monolithic substrate. In this paper, we discuss the development of a bond coat system tailored for monolithic silicon nitride that helps retain the strength of the substrate. Some of the unique requirements and challenges associated with the processing of non-line-of-sight EBCs for Si3N4 will also be discussed. Preliminary results from coating of airfoils will be presented.


Author(s):  
Tania Bhatia ◽  
Harry Eaton ◽  
Ellen Sun ◽  
Thomas Lawton ◽  
Venkat Vedula

Environmental barrier coatings (EBCs) are being developed for silicon carbide fiber reinforced silicon carbide matrix (SiC/SiC) composites to protect against accelerated oxidation and subsequent silica volatilization in high temperature, high-pressure steam environments encountered in gas turbine engines. Engine testing of three-layer barium strontium aluminosilicate (BSAS) has demonstrated a life of over 15,000 hours in a combustor liner application at a nominal temperature of 2200°F (1204°C). The engine field tests have shown that useful engine life is limited by BSAS recession and potential eutectic reactions between BSAS and silica. BSAS based coatings have also been shown to survive severe thermal gradient burner rig tests with 2700°F (1482°C) surface temperature and a 300°F (167°C) gradient through the coating. Promising EBC candidates for longer life and/or higher temperature applications include strontium aluminosilicate (SAS) based coatings.


2015 ◽  
Vol 11 (2) ◽  
pp. 238-272 ◽  
Author(s):  
Mica Grujicic ◽  
Jennifer Snipes ◽  
Ramin Yavari ◽  
S. Ramaswami ◽  
Rohan Galgalikar

Purpose – The purpose of this paper is to prevent their recession caused through chemical reaction with high-temperature water vapor, SiC-fiber/SiC-matrix ceramic-matrix composite (CMC) components used in gas-turbine engines are commonly protected with so-called environmental barrier coatings (EBCs). EBCs typically consist of three layers: a top thermal and mechanical protection coat; an intermediate layer which provides environmental protection; and a bond coat which assures good EBC/CMC adhesion. The materials used in different layers and their thicknesses are selected in such a way that the coating performance is optimized for the gas-turbine component in question. Design/methodology/approach – Gas-turbine engines, while in service, often tend to ingest various foreign objects of different sizes. Such objects, entrained within the gas flow, can be accelerated to velocities as high as 600 m/s and, on impact, cause substantial damage to the EBC and SiC/SiC CMC substrate, compromising the component integrity and service life. The problem of foreign object damage (FOD) is addressed in the present work computationally using a series of transient non-linear dynamics finite-element analyses. Before such analyses could be conducted, a major effort had to be invested toward developing, parameterizing and validating the constitutive models for all attendant materials. Findings – The computed FOD results are compared with their experimental counterparts in order to validate the numerical methodology employed. Originality/value – To the authors’ knowledge, the present work is the first reported study dealing with the computational analysis of the FOD sustained by CMCs protected with EBCs.


Author(s):  
Muthuvel Murugan ◽  
Anindya Ghoshal ◽  
Michael Walock ◽  
Luis G. Bravo ◽  
Rahul Koneru ◽  
...  

2021 ◽  
Author(s):  
Muthuvel Murugan ◽  
Anindya Ghoshal ◽  
Michael Walock ◽  
Luis G. Bravo ◽  
Rahul Koneru ◽  
...  

2010 ◽  
Vol 205 (2) ◽  
pp. 266-270 ◽  
Author(s):  
Sivakumar Ramasamy ◽  
Surendra N. Tewari ◽  
Kang N. Lee ◽  
Ramakrishna T. Bhatt ◽  
Dennis S. Fox

2010 ◽  
Vol 205 (2) ◽  
pp. 258-265 ◽  
Author(s):  
Sivakumar Ramasamy ◽  
Surendra N. Tewari ◽  
Kang N. Lee ◽  
Ramakrishna T. Bhatt ◽  
Dennis S. Fox

Author(s):  
Harry E. Eaton ◽  
Gary D. Linsey ◽  
Karren L. More ◽  
Joshua B. Kimmel ◽  
Jeffrey R. Price ◽  
...  

Silicon carbide fiber reinforced silicon carbide composites (SiC/SiC) are attractive for use in gas turbine engines as combustor liner materials, in part, because the temperature capability allows for reduced cooling. This enables the engine to operate more efficiently and to meet very stringent emission goals for NOx and CO. It has been shown, however, that SiC/SiC and other silica formers can degrade with time in the high steam environment of the gas turbine combustor due to accelerated oxidation and subsequent volatilization of the silica due to reaction with high pressure water (ref.s 1 & 2). As a result, an environmental barrier coating (EBC) is required in conjunction with the SiC composite in order to meet long life goals. Under the U.S. Department of Energy (DOE) sponsored Solar Turbines Incorporated Ceramic Stationary Gas Turbine (CSGT) engine program (ref. 3), EBC systems developed under the HSCT EPM program (NASA contract NAS3-23685) were applied to both SiC/SiC composite coupons and SiC/SiC combustion liners which were then evaluated in long term laboratory testing and in ground based turbine power generation, respectively. This paper discusses the application of the EBC’s to SiC/SiC composites and the results from laboratory and engine test evaluations.


Author(s):  
Harry E. Eaton ◽  
Gary D. Linsey ◽  
Ellen Y. Sun ◽  
Karren L. More ◽  
Joshua B. Kimmel ◽  
...  

Silicon carbide fiber reinforced silicon carbide composites (SiC/SiC CMC’s) are attractive for use in gas turbine engines as combustor liner materials because the temperature capability allows for reduced cooling. This enables the engine to operate more efficiently and enables the design of very stringent emission goals for NOx and CO. It has been shown, however, that SiC/SiC CMC’s and other silica formers can degrade with time in the high steam environment of the gas turbine combustor due to accelerated oxidation and subsequent volatilization of the silica due to reaction with high pressure water (ref.s 1, 2, 3, & 4). As a result, an environmental barrier coating (EBC) is required in conjunction with the SiC/SiC CMC in order to meet long life goals. Under the U.S. Department of Energy (DOE) sponsored Solar Turbines Incorporated Ceramic Stationary Gas Turbine (CSGT) engine program (ref. 5), EBC systems developed under the HSCT EPM program and improved under the CSGT program have been applied to both SiC/SiC CMC coupons and SiC/SiC CMC combustion liners which have been evaluated in long term laboratory testing and in ground based turbine power generation. This paper discusses the continuing evaluation (see ref. 6) of EBC application to SiC/SiC CMC’s and the results from laboratory and engine test evaluations along with refurbishment considerations.


Sign in / Sign up

Export Citation Format

Share Document