Numerical Simulation of Direct-contact Condensation from a Supersonic Steam Jet in Subcooled Water

2010 ◽  
Vol 18 (4) ◽  
pp. 577-587 ◽  
Author(s):  
Ajmal Shah ◽  
Imran Rafiq Chughtai ◽  
Mansoor Hameed Inayat
2010 ◽  
Author(s):  
Wenxi Tian ◽  
Yuki Ishiwatari ◽  
Satoshi Ikejiri ◽  
Yoshiaki Oka ◽  
Liejin Guo ◽  
...  

Author(s):  
Priyankan Datta ◽  
Aranyak Chakravarty ◽  
Koushik Ghosh ◽  
Achintya Mukhopadhyay ◽  
Swarnendu Sen

2021 ◽  
Author(s):  
Zach Alden ◽  
Gunnar Maples ◽  
Kristofer M. Dressler ◽  
Gregory Nellis ◽  
Arganthaël Berson

Abstract The stability of a steam plume during direct-contact condensation is investigated into a crossflow of subcooled water with mass fluxes that are higher (>600 kg/m2s) and a nozzle diameter (2.4 mm) that is smaller than typically seen in the literature. The transition from a stable steam plume to an unstable plume associated with the formation and collapse of steam bubbles is characterized by high-speed imaging and high-frequency pressure measurements. Four regimes are observed: stable, condensation oscillation, transition, and unstable. A regime map and spectral signatures of the different flow regimes are provided. Results are compared with correlations from the literature, which are typically derived for lower mass fluxes, larger nozzles, and injection into stagnant pools of water.


Sign in / Sign up

Export Citation Format

Share Document