high speed imaging
Recently Published Documents


TOTAL DOCUMENTS

987
(FIVE YEARS 246)

H-INDEX

45
(FIVE YEARS 9)

2022 ◽  
Author(s):  
Alex D. Brown ◽  
Mateo Gomez ◽  
Terrence R. Meyer ◽  
Steven F. Son ◽  
Daniel R. Guildenbecher

2021 ◽  
Vol 933 ◽  
Author(s):  
Kee Onn Fong ◽  
Filippo Coletti

In collisional gas–solid flows, dense particle clusters are often observed that greatly affect the transport properties of the mixture. The characterisation and prediction of this phenomenon are challenging due to limited optical access, the wide range of scales involved and the interplay of different mechanisms. Here, we consider a laboratory setup in which particles fall against upward-moving air in a square vertical duct: a classic configuration in riser reactors. The use of non-cohesive, monodispersed, spherical particles and the ability to independently vary the solid volume fraction ( $\varPhi _V = 0.1\,\% - 0.8\,\%$ ) and the bulk airflow Reynolds number ( $Re_{bulk} = 300 - 1200$ ) allows us to isolate key elements of the multiphase dynamics, providing the first laboratory observation of cluster-induced turbulence. Above a threshold $\varPhi _V$ , the system exhibits intense fluctuations of concentration and velocity, as measured by high-speed imaging via a backlighting technique which returns optically depth-averaged fields. The space–time autocorrelations reveal dense and persistent mesoscale structures falling faster than the surrounding particles and trailing long wakes. These are shown to be the statistical footprints of visually observed clusters, mostly found in the vicinity of the walls. They are identified via a percolation analysis, tracked in time, and characterised in terms of size, shape, location and velocity. Larger clusters are denser, longer-lived and have greater descent velocity. At the present particle Stokes number, the threshold $\varPhi _V \sim 0.5$ % (largely independent from $Re_{bulk}$ ) is consistent with the view that clusters appear when the typical interval between successive collisions is shorter than the particle response time.


Author(s):  
Xiaoye Han ◽  
Xiao Yu ◽  
Hua Zhu ◽  
Linyan Wang ◽  
Shui Yu ◽  
...  

An advanced ignition technique is developed to achieve multi-event breakdown and multi-site ignition using a single coil for ignition quality improvements. The igniter enables a unique elastic breakdown process embracing a series of high-frequency discharge events at the spark gap. The equivalent electric circuits and current/voltage equations are identified and verified for the first time to explain the working principle that governs such an elastic breakdown process. Benchmarking tests are first performed to compare the elastic breakdown ignition with the conventional and advanced multi-electrode ignition systems. The elastic breakdown and spark events are thereafter analyzed through current and voltage measurements and high-speed imaging techniques. Finally, ignition tests in combustion chambers are performed to examine the effects on the ignition process in comparison with conventional coil-based ignition systems. The experiments show that, the elastic breakdown ignition can distribute multiple high-frequency breakdown events at all electrode pairs of a multi-electrode sparkplug while using only one ignition coil, thereby offering significant cost saving advantage and packaging practicability.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amir Matin ◽  
Xu Wang

AbstractCompressive coded rotating mirror (CCRM) camera is a novel high-speed imaging system that operates under amplitude optical encoding and frame sweeping modalities in a passive imaging mode that is capable of reconstructing 1400 frames from a single shot image acquisition and achieves the highest compression ratio of 368 compared to the other compressive sensing (CS) based single-shot imaging modalities. The integrated optical encoding and compression adds a strong layer of encryption on the observed data and facilitates the integration of the CCRM camera with the imaging applications that require highly efficient data encryption and compression due to capturing highly sensitive data or limited transmission and storage capacities. CCRM uses amplitude encoding that significantly extends the key space where the probability of having the exact encoder pattern is estimated as $$P\left( A\right) \ =\ 1/{10}^{122,500}$$ P A = 1 / 10 122 , 500 , hence drastically reducing the possibility of data recovery in a brute force manner. Data reconstruction is achieved under CS based algorithms where the obtained amplitude-based pattern from optical encoder operates as the key in the recovery process. Reconstruction on the experimental as well as the synthetic data at various compression ratios demonstrate that the estimated key with less than 95$$\%$$ % matching elements were unable to recover the data where the achieved averaged structural similarity (SSIM) of 0.25 before 95$$\%$$ % encoder similarity and 0.85 SSIM at 100$$\%$$ % encoder similarity demonstrates the high-sensitivity of the proposed optical encryption technique.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1877
Author(s):  
Sabin Mihai ◽  
Diana Chioibasu ◽  
Muhammad Arif Mahmood ◽  
Liviu Duta ◽  
Marc Leparoux ◽  
...  

In this study a continuous wave Ytterbium-doped Yttrium Aluminum Garnet (Yb: YAG) disk laser has been used for welding of AlMg3 casted alloy. A high-speed imaging camera has been employed to record hot vapor plume features during the process. The purpose was to identify a mechanism of pores detection in real-time based on correlations between metallographic analyses and area/intensity of the hot vapor in various locations of the samples. The pores formation and especially the position of these pores had to be kept under control in order to weld thick samples. Based on the characterization of the hot vapor, it has been found that the increase of the vapor area that exceeded a threshold value (18.5 ± 1 mm2) was a sign of pores formation within the weld seam. For identification of the pores’ locations during welding, the monitored element was the hot vapor intensity. The hot vapor core spots having a grayscale level reaching 255 was associated with the formation of a local pore. These findings have been devised based on correlation between pores placement in welds cross-section microscopy images and the hot vapor plume features in those respective positions.


2021 ◽  
Author(s):  
Annie Zhou ◽  
Shaun A Engelmann ◽  
Samuel A Mihelic ◽  
Alankrit Tomar ◽  
Ahmed M Hassan ◽  
...  

We demonstrate a simple, low-cost two-photon microscope design with both galvo-galvo and resonant-galvo scanning capabilities. We quantify and compare the signal-to-noise ratios and imaging speeds of the galvo-galvo and resonant-galvo scanning modes when used for murine neurovascular imaging. The two scanning modes perform as expected under shot-noise limited detection and are found to achieve comparable signal-to-noise ratios. Resonant-galvo scanning is capable of reaching desired signal-to-noise ratios using less acquisition time when higher excitation power can be used. Given equal excitation power and total pixel dwell time between the two methods, galvo-galvo scanning outperforms resonant-galvo scanning in image quality when detection deviates from being shot-noise limited.


2021 ◽  
Author(s):  
Pengcheng Zhang ◽  
David Rumschitzki ◽  
Robert H Edwards

During exocytosis, the fusion of secretory vesicle with plasma membrane forms a pore that regulates release of neurotransmitter and peptide. Osmotic forces contribute to exocytosis but release through the pore is thought to occur by diffusion. Heterogeneity of fusion pore behavior has also suggested stochastic variation in a common exocytic mechanism, implying a lack of biological control. Imaging at millisecond resolution to observe the first events in exocytosis, we find that fusion pore duration is bimodal rather than stochastic. Loss of calcium sensor synaptotagmin 7 increases the proportion of slow events without changing the intrinsic properties of either class, indicating the potential for independent regulation. In addition, dual imaging shows a delay in the entry of external dye relative to release that indicates discharge at high velocity rather than strictly by diffusion.


2021 ◽  
Vol 1135 (1) ◽  
pp. 012015
Author(s):  
Petr Horník ◽  
Hana Šebestová ◽  
Jan Novotný ◽  
Libor Mrňa

Abstract There are several approaches to weld quality monitoring during laser welding. Reflected laser radiation carries partial information about the welding process. Fibre lasers has usually a built-in diode to detect excessive back-reflected laser radiation to protect the laser source from damage. Reflected laser radiation measured in the laser source is compared with reflected laser radiation measured in the welding head. Moreover, coaxial high-speed imaging with a narrow bandpass filter on laser wavelength is used to visualize the reflected laser radiation. The advantage of this solution is that no additional illumination is needed and the reflected laser intensity and spatial distribution can be obtained from the image. Keyhole inlet dimensions are measured and related to the laser power. The transition between laser welding modes is studied.


Sign in / Sign up

Export Citation Format

Share Document