Finite Element Analysis of 100 t Hot Metal Ladle in Process of Tipping

2010 ◽  
Vol 17 (11) ◽  
pp. 19-23 ◽  
Author(s):  
Hong-yu Tian ◽  
Fu-rong Chen ◽  
Rui-jun Xie ◽  
Shi-hui Li
Author(s):  
Daniel H. Suchora ◽  
Harry S. Perrine ◽  
Bradley Chamberlain

Abstract An electric powered Hot Metal Ladle Car was designed to safely transport a ladle filled with 160 metric tons of molten steel. The ladle geometry and space constraints within the use environment were specified. A final design was prepared and documented which met the design requirements and could be efficiently manufactured. An initial design was developed using past designs of a similar nature as a basis. By hand stress calculations were performed and the design modified to get stress values to acceptable levels. Preliminary design drawings were developed. At this stage of the design, some engineering personnel felt that the “by hand” stress analysis was sufBciently accurate to go ahead with fabrication. After much discussion it was decided to perform a Finite Element Analysis (FEA) to verify the design stresses calculated “by hand”. The FEA analysis predicted stresses that were significantly higher than indicated “by hand” in some critical change of section regions. These stress levels were much higher than the allowable stresses for this design. The difference between the FEA stresses and “by hand” stresses were evaluated. After much discussion and thought an insight to the actual load flow was developed which was consistent with the FEA results. With this insight, modifications were made to the design and incorporated into the FEA model. These changes needed to be practical from a manufacturing and end use viewpoint. After a few iterations on the design tire FEA stresses were reduced to an acceptable level. These changes were incorporated into the design. The final design of the ladle car was fabricated. The design was significantly improved due to the ability to accurately calculate stresses in transition regions of the frame where “by hand” methods were not really applicable. The combination of “by hand” methods to ballpark a design and FEA methods to reftne a design proved to be a powerful method to get a truly good design.


2002 ◽  
Vol 11 (1) ◽  
pp. 30-40 ◽  
Author(s):  
Chatchai Kunavisarut ◽  
Lisa A. Lang ◽  
Brian R. Stoner ◽  
David A. Felton

2019 ◽  
Vol 13 (3) ◽  
pp. 5242-5258
Author(s):  
R. Ravivarman ◽  
K. Palaniradja ◽  
R. Prabhu Sekar

As lined, higher transmission ratio drives system will have uneven stresses in the root region of the pinion and wheel. To enrich this agility of uneven stresses in normal-contact ratio (NCR) gearing system, an enhanced system is desirable to be industrialized. To attain this objective, it is proposed to put on the idea of modifying the correction factor in such a manner that the bending strength of the gearing system is improved. In this work, the correction factor is modified in such a way that the stress in the root region is equalized between the pinion and wheel. This equalization of stresses is carried out by providing a correction factor in three circumstances: in pinion; wheel and both the pinion and the wheel. Henceforth performances of this S+, S0 and S- drives are evaluated in finite element analysis (FEA) and compared for balanced root stresses in parallel shaft spur gearing systems. It is seen that the outcomes gained from the modified drive have enhanced performance than the standard drive.


Sign in / Sign up

Export Citation Format

Share Document