Relationship between energy-dependent fluorescence quenching and xanthophyll-cycle-pigments in transgenic chlorophyll-deficient tobacco grown under different light intensities

1998 ◽  
Vol 43 (2) ◽  
pp. 136-145 ◽  
Author(s):  
Heiko Härtel ◽  
Immo Reinhardt ◽  
Bernhard Grimm
1995 ◽  
Vol 22 (2) ◽  
pp. 231 ◽  
Author(s):  
N Mohanty ◽  
HY Yamamoto

Dibucaine reportedly inhibits the light-induced transthylakoid proton gradient of chloroplasts without inhibiting energy-dependent non-photochemical chlorophyll fluorescence quenching (Laasch, H. and Weis, E. (1989). Photosynthesis Research 22, 137-146). We show that dibucaine can inhibit fluorescence quenching, depending on the de-epoxidation state of the xanthophyll cycle. Whereas dibucaine (20-40 μM) had little effect on fluorescence quenching in pre-illuminated-type thylakoids (loaded with zeaxanthin and antheraxanthin), it strongly inhibited quenching in dark-adapted-type thylakoids (no preinduction of de-epoxidation). Dibucaine inhibited lumen acidification similarly in both types of thylakoids and also the induction of violaxanthin de-epoxidation in dark-adapted thylakoids. Thus dark-adapted and pre-illuminated thylakoids differed in de-epoxidation states and their suspectibility to dibucaine inhibition of fluorescence quenching corresponded to this difference. The mechanism of inhibition of de-epoxidation by dibucaine is unclear. It could be due to the inhibition of lumen acidification but an inhibition of the violaxanthin available for de-epoxidation is not excluded. High dibucaine concentrations inhibited de-epoxidase activity directly. Dibucaine inhibition of fluorescence quenching, however, is not limited to the inhibition of de-epoxidation. Small but clear effects on fluorescence quenching were present in thylakoids even with de-epoxidation preinduced. Moreover, thylakoids with preinduced de-epoxidation were more resistant to dibucaine inhibition of fluorescene quenching when poised by salt treatments for proton partitioning into membrane-sequestered domains than when poised for proton partitioning into delocalised domains. We conclude that non-photochemical quenching of chlorophyll fluorescence depends on both de-epoxidised xanthophylls and sequestered proton domains in the thylakoid membranes


1984 ◽  
Vol 220 (1220) ◽  
pp. 371-382 ◽  

During the chlorophyll fluorescence oscillation described in barley protoplasts (Quick & Horton, Proc. R. Soc. Lond . B 220, 361-370, 1984) the components which contribute to quenching have been quantified. Quenching due to oxidized Q ( q Q ) was measured either by DCMU addition or by light doubling and indicated an oscillation in the redox state of Q which was antiparallel to the rate of oxygen evolution but was approximately 15 s out of phase at a variety of light intensities and temperatures. An oscillation in the extent of energy-dependent quenching, q e , was observed in strong but not weak light. These results are discussed in terms of the mechanism of the changes in energy and redox states that can contribute additively but in differing proportions to the fluorescence oscillation.


Sign in / Sign up

Export Citation Format

Share Document