Physiological analyses of the hydrogen gas exchange in cyanobacteria

1998 ◽  
Vol 43 (2) ◽  
pp. 146-151 ◽  
Author(s):  
Refat Abdel-Basset ◽  
Klaus P. Bader
Keyword(s):  
1997 ◽  
Vol 52 (11-12) ◽  
pp. 775-781 ◽  
Author(s):  
Refat Abdel-Basset ◽  
Klaus P. Bader

Abstract The filamentous non-heterocystous cyanobacterium Oscillatoria chalybea is capable to photoevolve molecular hydrogen when the cells are flushed to anaerobiosis with nitrogen or argon and exposed to short light flashes or continuous light. The light-induced hydrogen gas exchange of Oscillatoria chalybea has been investigated by direct determination of dynamic changes in the hydrogen partial pressure at m/e=2 in the H/D collector of a mass spectrometric set-up. By means of this technique also the time curves of the light-induced hydrogen gas exchange could be directly recorded. Depending on the chlorophyll concentration in the measuring cell we observed an increasing hydrogen content of the aqueous Oscillatoria suspension i.e. a dark evolution of molecular hydrogen. Upon the onset of light an initial rise of the H 2-signal was observed which was increasingly mixed or followed by a hydrogen uptake. The capability to photoevolve molecular hydrogen was maximal with young cultures and decreased with increasing age. The hydrogen evolution signals require relatively short dark adaptation to get pronounced; few seconds suffice for 2/3 of the hydrogen evolution amplitude. Prolonged dark adaptation maximizes the flash amplitudes. The hydrogen evolu­tion signals do not deactivate by low flash frequency Oscillatoria chalybea evolves molecular hydrogen following growth on nitrogen free or nitrate containing medium. Increase of the oxygen partial pressure of the assays completely abolishes the hydrogen evolution signals with an I50-value of 6 μm.


1967 ◽  
Vol 31 ◽  
pp. 265-278 ◽  
Author(s):  
A. Blaauw ◽  
I. Fejes ◽  
C. R. Tolbert ◽  
A. N. M. Hulsbosch ◽  
E. Raimond

Earlier investigations have shown that there is a preponderance of negative velocities in the hydrogen gas at high latitudes, and that in certain areas very little low-velocity gas occurs. In the region 100° <l< 250°, + 40° <b< + 85°, there appears to be a disturbance, with velocities between - 30 and - 80 km/sec. This ‘streaming’ involves about 3000 (r/100)2solar masses (rin pc). In the same region there is a low surface density at low velocities (|V| < 30 km/sec). About 40% of the gas in the disturbance is in the form of separate concentrations superimposed on a relatively smooth background. The number of these concentrations as a function of velocity remains constant from - 30 to - 60 km/sec but drops rapidly at higher negative velocities. The velocity dispersion in the concentrations varies little about 6·2 km/sec. Concentrations at positive velocities are much less abundant.


Sign in / Sign up

Export Citation Format

Share Document