chlorophyll concentration
Recently Published Documents


TOTAL DOCUMENTS

899
(FIVE YEARS 270)

H-INDEX

59
(FIVE YEARS 6)

2022 ◽  
Vol 293 ◽  
pp. 110722
Author(s):  
Katherine Fraga Ruas ◽  
Danilo Força Baroni ◽  
Guilherme Augusto Rodrigues de Souza ◽  
Wallace de Paula Bernado ◽  
Jessica Sousa Paixão ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Ning Wang ◽  
Tianyu Ji ◽  
Xiao Liu ◽  
Qiang Li ◽  
Kulihong Sairebieli ◽  
...  

Seedlings in regenerating layer are frequently attacked by herbivorous insects, while the combined effects of defoliation and shading are not fully understood. In the present study, two Leguminosae species (Robinia pseudoacacia and Amorpha fruticosa) were selected to study their responses to combined light and defoliation treatments. In a greenhouse experiment, light treatments (L+, 88% vs L−, 8% full sunlight) and defoliation treatments (CK, without defoliation vs DE, defoliation 50% of the upper crown) were applied at the same time. The seedlings’ physiological and growth traits were determined at 1, 10, 30, and 70 days after the combined treatment. Our results showed that the effects of defoliation on growth and carbon allocation under high light treatments in both species were mainly concentrated in the early stage (days 1–10). R. pseudoacacia can achieve growth recovery within 10 days after defoliation, while A. fruticosa needs 30 days. Seedlings increased SLA and total chlorophyll concentration to improve light capture efficiency under low light treatments in both species, at the expense of reduced leaf thickness and leaf lignin concentration. The negative effects of defoliation treatment on plant growth and non-structural carbohydrates (NSCs) concentration in low light treatment were significantly higher than that in high light treatment after recovery for 70 days in R. pseudoacacia, suggesting sufficient production of carbohydrate would be crucial for seedling growth after defoliation. Plant growth was more sensitive to defoliation and low light stress than photosynthesis, resulting in NSCs accumulating during the early period of treatment. These results illustrated that although seedlings could adjust their resource allocation strategy and carbon dynamics in response to combined defoliation and light treatments, individuals grown in low light conditions will be more suppressed by defoliation. Our results indicate that we should pay more attention to understory seedlings’ regeneration under the pressure of herbivorous insects.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 42
Author(s):  
Kaitlyn E. Trepanier ◽  
Laura Manchola-Rojas ◽  
Bradley D. Pinno

Buried wood is an important but understudied component of reclamation soils. We examined the impacts of buried wood amounts and species on the growth of the common reclamation tree species trembling aspen (Populus tremuloides). In a greenhouse study, aspen seedlings were planted into four soil types, upland derived fine forest floor-mineral mix (fFFMM), coarse forest floor-mineral mix (cFFMM), and lowland derived peat and peat-mineral mix (PMM), that were mixed with either aspen or pine wood shavings at four concentrations (0%, 10%, 20% and 50% of total volume). Height and diameter growth, chlorophyll concentration, and leaf and stem biomass were measured. Soil nutrients and chemical properties were obtained from a parallel study. Buried wood primarily represents an input of carbon to the soil, increasing the C:N ratio, reducing the soil available nitrogen and potentially reducing plant growth. Soil type had the largest impact on aspen growth with fFFMM = peat > PMM > cFFMM. Buried wood type, i.e., aspen or pine, did not have an impact on aspen development, but the amount of buried wood did. In particular, there was an interaction between wood amount and soil type with a large reduction in aspen growth with wood additions of 10% and above on the more productive soils, but no reduction on the less productive soils.


Author(s):  
Rachel E. Schattman ◽  
Alicyn Smart ◽  
Sean Birkel ◽  
Haley Jean ◽  
Kallol Barai ◽  
...  

It is well established that the interacting effects of temperature and precipitation will alter agroecological systems on a global scale. These shifts will influence the fitness of specialty crops, specifically strawberries (Fragaria x ananassa), an important crop in the Northeastern United States. In this study, four precipitation scenarios were developed that are representative of current and probable-future growing season precipitation patterns. Using a precipitation simulator, we tested these scenarios on potted day neutral strawberries. This study generated four primary results: (1) though treatments received different amounts of precipitation, little difference was observed in soil volumetric water content or temperature. However, treatments designed to simulate future conditions were more likely those designed to simulate current conditions to have higher nitrate-in-leachate (N-leachate) concentrations; (2) neither total precipitation nor seasonable distribution were associated with foliar or root disease pressure; (3) while there was a slightly higher chance that photosynthetic potential and capacity would be higher in drier conditions, little difference was observed in the effects on chlorophyll concentration, and no water stress was detected in any treatment; and (4) leaf biomass was likely more affected by total rather than seasonal distribution of precipitation, but interaction between changing rainfall distribution and seasonal totals is likely to be an important driver of root biomass development in the future.


Algorithms ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 4
Author(s):  
Taddeo Ssenyonga ◽  
Øyvind Frette ◽  
Børge Hamre ◽  
Knut Stamnes ◽  
Dennis Muyimbwa ◽  
...  

We present an algorithm for simultaneous retrieval of aerosol and marine parameters in coastal waters. The algorithm is based on a radiative transfer forward model for a coupled atmosphere-ocean system, which is used to train a radial basis function neural network (RBF-NN) to obtain a fast and accurate method to compute radiances at the top of the atmosphere (TOA) for given aerosol and marine input parameters. The inverse modelling algorithm employs multidimensional unconstrained non-linear optimization to retrieve three marine parameters (concentrations of chlorophyll and mineral particles, as well as absorption by coloured dissolved organic matter (CDOM)), and two aerosol parameters (aerosol fine-mode fraction and aerosol volume fraction). We validated the retrieval algorithm using synthetic data and found it, for both low and high sun, to predict each of the five parameters accurately, both with and without white noise added to the top of the atmosphere (TOA) radiances. When varying the solar zenith angle (SZA) and retraining the RBF-NN without noise added to the TOA radiance, we found the algorithm to predict the CDOM absorption, chlorophyll concentration, mineral concentration, aerosol fine-mode fraction, and aerosol volume fraction with correlation coefficients greater than 0.72, 0.73, 0.93, 0.67, and 0.87, respectively, for 45∘≤ SZA ≤ 75∘. By adding white Gaussian noise to the TOA radiances with varying values of the signal-to-noise-ratio (SNR), we found the retrieval algorithm to predict CDOM absorption, chlorophyll concentration, mineral concentration, aerosol fine-mode fraction, and aerosol volume fraction well with correlation coefficients greater than 0.77, 0.75, 0.91, 0.81, and 0.86, respectively, for high sun and SNR ≥ 95.


Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 2
Author(s):  
Farrukh Azeem ◽  
Usman Ijaz ◽  
Muhammad Amjad Ali ◽  
Sabir Hussain ◽  
Muhammad Zubair ◽  
...  

Potassium (K+) is one of the most important cations that plays a significant role in plants and constitutes up to 10% of plants’ dry weight. Plants exhibit complex systems of transporters and channels for the distribution of K+ from soil to numerous parts of plants. In this study, we have identified 39 genes encoding putative K+ transport-related genes in Vigna radiata. Chromosomal mapping of these genes indicated an uneven distribution across eight out of 11 chromosomes. Comparative phylogenetic analysis of different plant species, i.e., V. radiata, Glycine max, Cicer arietinum, Oryza sativa, and Arabidopsis thaliana, showed their strong conservation in different plant species. Evolutionary analysis of these genes suggests that gene duplication is a major route of expansion for this family in V. radiata. Comprehensive promoter analysis identified several abiotic stresses related to cis-elements in the promoter regions of these genes, suggesting their role in abiotic stress tolerance. Our additional analyses indicated that abiotic stresses adversely affected the chlorophyll concentration, carotenoids, catalase, total soluble protein concentration, and the activities of superoxide and peroxidase in V. radiata. It also disturbs the ionic balance by decreasing the uptake of K+ content and increasing the uptake of Na+. Expression analysis from high-throughput sequencing data and quantitative real-time PCR experiments revealed that several K+ transport genes were expressed in different tissues (seed, flower, and pod) and in abiotic stress-responsive manners. A highly significant variation of expression was observed for VrHKT (1.1 and 1.2), VrKAT (1 and 2) VrAKT1.1, VrAKT2, VrSKOR, VrKEA5, VrTPK3, and VrKUP/HAK/KT (4, 5, and 8.1) in response to drought, heat or salinity stress. It reflected their potential roles in plant growth, development, or stress adaptations. The present study gives an in-depth understanding of K+ transport system genes in V. radiata and will serve as a basis for a functional analysis of these genes.


Author(s):  
Ji-Hoon Oh ◽  
Kyung Min Noh ◽  
Hyung-Gyu Lim ◽  
Emilia Kyung Jin ◽  
Sang-Yoon Jun ◽  
...  

Abstract IIt has been suggested that the freshwater flux due to the recent melting of the Antarctic ice-sheet/shelf will suppress ventilation in the Southern Ocean. In this study, we performed idealized earth system simulations to examine the impacts of Antarctic meltwater on surface phytoplankton biomass in the Antarctic Ocean. The enhanced stratification due to the meltwater leads to a decrease in the surface nitrate concentration but an increase in the surface dissolved iron concentration. These changes are associated with the reduced upwelling of nitrate-rich deep water and the trapped iron exported from the terrestrial sediment. Because of the limited iron availability in the Southern Ocean, the trapped iron in surface water enhances the chlorophyll concentration in the open ocean. However, in the marginal sea along the Antarctic coastline where the iron is relatively sufficient, a nitrate reduction induces a chlorophyll decrease, indicating a regime shift from iron-limited to nitrate-limited conditions.


2021 ◽  
Vol 11 (2) ◽  
pp. 385-391
Author(s):  
Marcelinus Christwardana ◽  
Athanasia Amanda Septevani ◽  
Linda Aliffia Yoshi

Photosynthesis is a technique for converting light energy into chemical energy that is both efficient and sustainable. Chlorophyll in energy-transducing photosynthetic organisms is unique because of their distinctive structure and composition. In photo-bioelectrochemical research, the chlorophyll's quantum trapping efficiency is attractive. Chlorophyll from Spirulina platensis is demonstrated to communicate directly with TiO2-modified Indium Thin Oxide (ITO) to generate electricity without the use of any mediator. TiO2-modified ITO with a chlorophyll concentration of 100 % generated the greatest power density and photocurrent of approximately 178.15 mW/m2 and 596.92 mA/m2 from water oxidation under light among all the other materials. While the sensitivity with light was 0.885 mA/m2.lux, and Jmax value was 1085 mA/m2. Furthermore, the power and photocurrent density as a function of chlorophyll content are studied. The polarizability and Van der Waals interaction of TiO2 and chlorophyll are crucial in enhancing electron transport in photo-bioelectrochemical systems. As a result, this anode structure has the potential to be improved and used to generate even more energy.


Sign in / Sign up

Export Citation Format

Share Document