The role of left inferior frontal gyrus in working memory: Semantic competition and inhibition

NeuroImage ◽  
2000 ◽  
Vol 11 (5) ◽  
pp. S431
Author(s):  
Kazuhisa Niki ◽  
Jing Luo
2008 ◽  
Vol 1229 ◽  
pp. 167-178 ◽  
Author(s):  
Christopher M. Grindrod ◽  
Natalia Y. Bilenko ◽  
Emily B. Myers ◽  
Sheila E. Blumstein

2022 ◽  
Author(s):  
Mollie Hamilton ◽  
Ashley Ross ◽  
Erik Blaser ◽  
Zsuzsa Kaldy

Working Memory (WM), the ability to maintain information in service to a task, is characterized by its limited capacity. Several influential models attribute this limitation in a large extent to proactive interference (Anderson & Neely, 1996; Bunting, 2006; Kane & Engle, 2000), the phenomenon that previously encoded, now-irrelevant information competes with relevant information (Keppel & Underwood, 1963). Here, we look back at the adult PI literature, spanning over sixty years, as well as recent results linking the ability to cope with PI to WM capacity (Endress & Potter, 2014; Kane & Engle, 2000). In early development, WM capacity is even more limited (Kaldy & Leslie, 2005; Simmering, 2012), yet an accounting for the role of PI has been lacking. Our Focus Article aims to address this through an integrative account: since PI resolution is mediated by networks involving the frontal cortex (particularly, the left inferior frontal gyrus) and the posterior parietal cortex (Badre & Wagner, 2005; Jonides & Nee, 2006), and since children have protracted development and less recruitment (Crone et al., 2006) of these areas, the increase in the ability to cope with PI (Kail, 2002; De Visscher & Noel, 2014) is a major factor underlying the increase in WM capacity in early development. Given this, we suggest that future research should focus on mechanistic studies of PI resolution in children. Finally, we note a crucial methodological implication: typical WM paradigms repeat stimuli from trial-to-trial, facilitating, inadvertently, PI and reducing performance; we may be fundamentally underestimating children’s WM capacity.


Author(s):  
Yosef Grodzinsky

AbstractThe prospects of a cognitive neuroscience of syntax are considered with respect to functional neuroanatomy of two seemingly independent systems: Working Memory and syntactic representation and processing. It is proposed that these two systems are more closely related than previously supposed. In particular, it is claimed that a sentence with anaphoric dependencies involves several Working Memories, each entrusted with a different linguistic function. Components of Working Memory reside in the Left Inferior Frontal Gyrus, which is associated with Broca’s region. When lesioned, this area manifests comprehension disruptions in the ability to analyze intra-sentential dependencies, suggesting that Working Memory spans over syntactic computations. The unification of considerations regarding Working Memory with a purely syntactic approach to Broca’s regions leads to the conclusion that mechanisms that compute transformations—and no other syntactic relations—reside in this area.


2004 ◽  
Vol 16 (2) ◽  
pp. 289-300 ◽  
Author(s):  
Philip Nixon ◽  
Jenia Lazarova ◽  
Iona Hodinott-Hill ◽  
Patricia Gough ◽  
Richard Passingham

Repetitive transcranial magnetic stimulation (rTMS) offers a powerful new technique for investigating the distinct contributions of the cortical language areas. We have used this method to examine the role of the left inferior frontal gyrus (IFG) in phonological processing and verbal working memory. Functional neuroimaging studies have implicated the posterior part of the left IFG in both phonological decision making and subvocal rehearsal mechanisms, but imaging is a correlational method and it is therefore necessary to determine whether this region is essential for such processes. In this paper we present the results of two experiments in which rTMS was applied over the frontal operculum while subjects performed a delayed phonological matching task. We compared the effects of disrupting this area either during the delay (memory) phase or at the response (decision) phase of the task. Delivered at a time when subjects were required to remember the sound of a visually presented word, rTMS impaired the accuracy with which they subsequently performed the task. However, when delivered later in the trial, as the subjects compared the remembered word with a given pseudoword, rTMS did not impair accuracy. Performance by the same subjects on a control task that required the processing of nonverbal visual stimuli was unaffected by the rTMS. Similarly, performance on both tasks was unaffected by rTMS delivered over a more anterior site (pars triangularis). We conclude that the opercular region of the IFG is necessary for the normal operation of phonologically based working memory mechanisms. Furthermore, this study shows that rTMS can shed further light on the precise role of cortical language areas in humans.


Neuroreport ◽  
2007 ◽  
Vol 18 (5) ◽  
pp. 431-434 ◽  
Author(s):  
Toshio Inui ◽  
Kenji Ogawa ◽  
Masato Ohba

2011 ◽  
Vol 1383 ◽  
pp. 196-205 ◽  
Author(s):  
M.C. Keuken ◽  
A. Hardie ◽  
B.T. Dorn ◽  
S. Dev ◽  
M.P. Paulus ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document