Chapter 5 Molecular structure and regulation of tight junctions

Author(s):  
Christina M. Van Itallie ◽  
James Melvin Anderson
Physiology ◽  
2001 ◽  
Vol 16 (3) ◽  
pp. 126-130 ◽  
Author(s):  
James Melvin Anderson

Tight junctions create a paracellular barrier with physiological properties that differ among epithelia. Among these differences are electrical resistance and discrimination for solute size and charge. Emerging evidence suggests that a large family of transmembrane proteins called the claudins create these variable properties.


Author(s):  
Wah Chiu ◽  
David Grano

The periodic structure external to the outer membrane of Spirillum serpens VHA has been isolated by similar procedures to those used by Buckmire and Murray (1). From SDS gel electrophoresis, we have found that the isolated fragments contain several protein components, and that the crystalline structure is composed of a glycoprotein component with a molecular weight of ∽ 140,000 daltons (2). Under an electron microscopic examination, we have visualized the hexagonally-packed glycoprotein subunits, as well as the bilayer profile of the outer membrane. In this paper, we will discuss some structural aspects of the crystalline glycoproteins, based on computer-reconstructed images of the external cell wall fragments.The specimens were prepared for electron microscopy in two ways: negatively stained with 1% PTA, and maintained in a frozen-hydrated state (3). The micrographs were taken with a JEM-100B electron microscope with a field emission gun. The minimum exposure technique was essential for imaging the frozen- hydrated specimens.


Author(s):  
Rita Meyer ◽  
Zoltan Posalaky ◽  
Dennis Mcginley

The Sertoli cell tight junctional complexes have been shown to be the most important structural counterpart of the physiological blood-testis barrier. In freeze etch replicas they consist of extensive rows of intramembranous particles which are not only oriented parallel to one another, but to the myoid layer as well. Thus the occluding complex has both an internal and an overall orientation. However, this overall orientation to the myoid layer does not seem to be necessary to its barrier function. The 20 day old rat has extensive parallel tight junctions which are not oriented with respect to the myoid layer, and yet they are inpenetrable by lanthanum. The mechanism(s) for the control of Sertoli cell junction development and orientation has not been established, although such factors as the presence or absence of germ cells, and/or hormones, especially FSH have been implicated.


1963 ◽  
Vol 60 ◽  
pp. 52-55
Author(s):  
István Kiss ◽  
Lajos Matus ◽  
István Opauszky

Planta Medica ◽  
2014 ◽  
Vol 80 (10) ◽  
Author(s):  
S Groscurth ◽  
T Kühn ◽  
P Kessler ◽  
V Rukachaisirikul

Sign in / Sign up

Export Citation Format

Share Document