Matrix metalloproteinases-2 and -9 and their endogenous tissue inhibitors in tissue remodeling after sealing of the fetal membranes in a sheep model of fetoscopic surgery

2002 ◽  
Vol 9 (3) ◽  
pp. 137-145 ◽  
Author(s):  
R Devlieger
2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Spyros A. Syggelos ◽  
Alexios J. Aletras ◽  
Ioanna Smirlaki ◽  
Spyros S. Skandalis

The leading complication of total joint replacement is periprosthetic osteolysis, which often results in aseptic loosening of the implant, leading to revision surgery. Extracellular matrix degradation and connective tissue remodeling around implants have been considered as major biological events in the periprosthetic loosening. Critical mediators of wear particle-induced inflammatory osteolysis released by periprosthetic synovial cells (mainly macrophages) are inflammatory cytokines, chemokines, and proteolytic enzymes, mainly matrix metalloproteinases (MMPs). Numerous studies reveal a strong interdependence of MMP expression and activity with the molecular mechanisms that control the composition and turnover of periprosthetic matrices. MMPs can either actively modulate or be modulated by the molecular mechanisms that determine the debris-induced remodeling of the periprosthetic microenvironment. In the present study, the molecular mechanisms that control the composition, turnover, and activity of matrix macromolecules within the periprosthetic microenvironment exposed to wear debris are summarized and presented. Special emphasis is given to MMPs and their endogenous tissue inhibitors (TIMPs), as well as to the proteasome pathway, which appears to be an elegant molecular regulator of specific matrix macromolecules (including specific MMPs and TIMPs). Furthermore, strong rationale for potential clinical applications of the described molecular mechanisms to the treatment of periprosthetic loosening and osteolysis is provided.


1999 ◽  
Vol 162 (3) ◽  
pp. 351-359 ◽  
Author(s):  
SC Riley ◽  
R Leask ◽  
FC Denison ◽  
K Wisely ◽  
AA Calder ◽  
...  

At parturition, breakdown of extracellular matrix in the fetal membranes may play a part in the rupture of the membranes and in the aetiology of premature rupture, in addition to having a regulatory role in the cell-cell interactions and signalling at the feto-maternal interface to stimulate myometrial contractility. The matrix metalloproteinases (MMPs) are important enzymes for the breakdown of extracellular matrix and their activity is regulated by a family of endogenous inhibitors, the tissue inhibitors of matrix metalloproteinases (TIMPs). At parturition, alteration in the balance between MMPs and TIMPs may mediate this extracellular matrix breakdown during rupture of fetal membranes. The aims of this study were to determine if the intrauterine secretion of TIMPs changes at labour, and to characterise their cellular sources. A broad range of TIMP activities (27-30 kDa, 24 kDa and 21 kDa) were detected by reverse zymography in term amniotic fluid. There was a significant (P<0.05) decrease in the amount of TIMPs in amniotic fluid and their release with the onset of labour. The TIMPs were characterised by immunoblot as TIMPs-1, -2, -3 and -4. High levels of TIMPs were secreted by explants of chorio-decidua, decidua parietalis and placenta, with less being released by amnion. Immunolocalisation studies revealed a specific distribution pattern for each of the TIMP isoforms. Trophoblast cells of chorion laeve, decidua parietalis and placental syncytiotrophoblast demonstrated specific immunoreactivity for all four isoforms. TIMPs were also found bound to selective regions of extracellular matrix. The decrease in TIMPs during labour may permit increased breakdown of extracellular matrix in the fetal membranes and decidua at parturition, thus altering cell signalling at the feto-maternal interface and facilitating membrane rupture.


2016 ◽  
Vol 34 (7) ◽  
pp. 305-312 ◽  
Author(s):  
Marta Łukaszewicz-Zając ◽  
Maciej Szmitkowski ◽  
Ala Litman-Zawadzka ◽  
Barbara Mroczko

Sign in / Sign up

Export Citation Format

Share Document