Characterization of baboon fetal membranes: Evaluation as a non-human primate model of fetal membrane rupture

1998 ◽  
Vol 5 (1) ◽  
pp. 192A-192A
Author(s):  
J MCLAREN ◽  
S BELL ◽  
A FAALEABAS
2021 ◽  
Author(s):  
Corinne Belville ◽  
Flora Ponelle-Chachuat ◽  
Marion Rouzaire ◽  
Christelle Gross ◽  
Bruno Pereira ◽  
...  

The integrity of human fetal membranes is crucial for harmonious fetal development throughout pregnancy. Their premature rupture is often the consequence of a physiological phenomenon previously exacerbated. Beyond all biological processes implied, inflammation is of primary importance and is qualified as sterile at the end of pregnancy. Complementary methylomic and transcriptomic strategies on amnion and choriodecidua explants taken from the altered (cervix zone) and intact fetal membranes at term and before labor were used in this study. By cross-analyzing genome-wide studies strengthened by in vitro experiments, we deciphered how the expression of Toll-like receptor 4 (TLR4), a well-known actor of pathological fetal membrane rupture, is controlled. Indeed, it is differentially regulated in the altered zone and between both layers by a dual mechanism: 1) the methylation of TLR4 and miRNA promoters and 2) targeting by miRNA (let-7a-2 and miR-125b-1) acting on the 3-UTR of TLR4. Consequently, this study demonstrates that a fine regulation of TLR4 is required for sterile inflammation establishment at the end of pregnancy and that it may be dysregulated in the pathological premature rupture of membranes.


2014 ◽  
Vol 136 (11) ◽  
Author(s):  
Wilfried Bürzle ◽  
Edoardo Mazza ◽  
John J. Moore

Puncture testing has been applied in several studies for the mechanical characterization of human fetal membrane (FM) tissue, and significant knowledge has been gained from these investigations. When comparing results of mechanical testing (puncture, inflation, and uniaxial tension), we have observed discrepancies in the rupture sequence of FM tissue and significant differences in the deformation behavior. This study was undertaken to clarify these discrepancies. Puncture experiments on FM samples were performed to reproduce previous findings, and numerical simulations were carried out to rationalize particular aspects of membrane failure. The results demonstrate that both rupture sequence and resistance to deformation depend on the samples' fixation. Soft fixation leads to slippage in the clamping, which reduces mechanical loading of the amnion layer and results in chorion rupturing first. Conversely, the stiffer, stronger, and less extensible amnion layer fails first if tight fixation is used. The results provide a novel insight into the interpretation of ex vivo testing as well as in vivo membrane rupture.


Sign in / Sign up

Export Citation Format

Share Document