De Novo variant in GNB2 associated with neurodevelopmental disease

2021 ◽  
Vol 132 ◽  
pp. S282
Author(s):  
Florencia del Viso ◽  
Lisa Lansdon ◽  
Emily Fleming ◽  
Bonnie Sullivan ◽  
Carol Saunders
2021 ◽  
Author(s):  
Ying Zhang ◽  
Yanyan Nie ◽  
Yu Mu ◽  
Jie Zheng ◽  
Xiaowei Xu ◽  
...  

Abstract Background:The pathogenic variation of CASK gene can cause CASK related mental disorders. The main clinical manifestations are microcephaly with pontine and cerebellar hypoplasia, X-linked mental disorders with or without nystagmus and FG syndrome. The main pathogenic mechanism is the loss of function of related protein caused by mutation. We reported a Chinese male newborn with a de novo variant in CASK gene. Case presentation:We present an 18-day-old baby with intellectual disability and brain hypoplasia. Whole-exome sequencing was performed, which detected a hemizygous missense mutation c.764G>A of CASK gene. The mutation changed the 255th amino acid from Arg to His. Software based bioinformatics analyses were conducted to infer its functional effect.Conclusions:In this paper, a de novo mutation of CASK gene was reported. Moreover, a detailed description of all the cases described in the literature is reported.CASK mutations cause a variety of clinical phenotypes. Its diagnosis is difficult due to the lack of typical clinical symptoms. Genetic testing should be performed as early as possible if this disease is suspected. This case provides an important reference for the diagnosis and treatment of future cases.


2021 ◽  
pp. jmedgenet-2020-107462
Author(s):  
Natalie B Tan ◽  
Alistair T Pagnamenta ◽  
Matteo P Ferla ◽  
Jonathan Gadian ◽  
Brian HY Chung ◽  
...  

PurposeBinding proteins (G-proteins) mediate signalling pathways involved in diverse cellular functions and comprise Gα and Gβγ units. Human diseases have been reported for all five Gβ proteins. A de novo missense variant in GNB2 was recently reported in one individual with developmental delay/intellectual disability (DD/ID) and dysmorphism. We aim to confirm GNB2 as a neurodevelopmental disease gene, and elucidate the GNB2-associated neurodevelopmental phenotype in a patient cohort.MethodsWe discovered a GNB2 variant in the index case via exome sequencing and sought individuals with GNB2 variants via international data-sharing initiatives. In silico modelling of the variants was assessed, along with multiple lines of evidence in keeping with American College of Medical Genetics and Genomics guidelines for interpretation of sequence variants.ResultsWe identified 12 unrelated individuals with five de novo missense variants in GNB2, four of which are recurrent: p.(Ala73Thr), p.(Gly77Arg), p.(Lys89Glu) and p.(Lys89Thr). All individuals have DD/ID with variable dysmorphism and extraneurologic features. The variants are located at the universally conserved shared interface with the Gα subunit, which modelling suggests weaken this interaction.ConclusionMissense variants in GNB2 cause a congenital neurodevelopmental disorder with variable syndromic features, broadening the spectrum of multisystem phenotypes associated with variants in genes encoding G-proteins.


Genes ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1238
Author(s):  
Olga Mironovich ◽  
Elena Dadali ◽  
Sergey Malmberg ◽  
Tatyana Markova ◽  
Oxana Ryzhkova ◽  
...  

Objective: To report the first de novo missense mutation in the SYT2 gene causing distal hereditary motor neuropathy. Methods: Genetic testing was carried out, including clinical exome sequencing for the proband and Sanger sequencing for the proband and his parents. We described the clinical and electrophysiological features found in the patient. Results: We reported a proband with a new de novo missense mutation, c.917C>T (p.Ser306Leu), in the C2B domain of SYT2. The clinical presentation was similar to that of phenotypes described in previous studies. A notable feature in our study was normal electrophysiological testing results of the patient. Conclusions: In this study we reinforced the association between SYT2 mutations and distal hereditary motor neuropathy. We also described the clinical presentation of the patient carrying this pathogenic variant and provided unusual results of electrophysiological testing. The results showed that a diagnosis of SYT2-associated neuropathy should be based on the similarity of clinical manifestations, rather than the results of electrophysiological testing.


2020 ◽  
Vol 8 (7) ◽  
Author(s):  
Alba Sanchis‐Juan ◽  
Marcia A. Hasenahuer ◽  
James A. Baker ◽  
Amy McTague ◽  
Katy Barwick ◽  
...  

2019 ◽  
Vol 18 (01) ◽  
pp. 039-044
Author(s):  
Behshad Charkhand ◽  
Natarie Liu ◽  
Karlene T. Barrett ◽  
Walla Al-Hertani ◽  
Morris H. Scantlebury

AbstractThe infantile spasms (IS) syndrome is a developmental epileptic encephalopathy disorder characterized by epileptic spasms occurring in infancy, hypsarrhythmia on the electroencephalography (EEG) and developmental arrest or regression. The etiologies include structural, metabolic, and genetic causes. We report an unusual case of IS due to a de novo variant in the MECP2 gene. The patient also had variants of uncertain significance in the SCN9A and SCN5A genes inherited from the father and mother, respectively. This report highlights the need for broad genetic testing in MECP2-related disorders with atypical presentations to better understand the disease etiology.


2016 ◽  
Vol 59 (10) ◽  
pp. 549-553 ◽  
Author(s):  
Bernt Popp ◽  
Regina Trollmann ◽  
Christian Büttner ◽  
Almuth Caliebe ◽  
Christian T. Thiel ◽  
...  

2018 ◽  
Vol 176 (12) ◽  
pp. 2623-2629 ◽  
Author(s):  
Monica H. Wojcik ◽  
Kyoko Okada ◽  
Sanjay P. Prabhu ◽  
Dan W. Nowakowski ◽  
Keri Ramsey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document