neurodevelopmental disease
Recently Published Documents


TOTAL DOCUMENTS

160
(FIVE YEARS 104)

H-INDEX

24
(FIVE YEARS 7)

Author(s):  
Stamatina Tzanoulinou ◽  
Stefano Musardo ◽  
Alessandro Contestabile ◽  
Sebastiano Bariselli ◽  
Giulia Casarotto ◽  
...  

AbstractMutations in the SHANK3 gene have been recognized as a genetic risk factor for Autism Spectrum Disorder (ASD), a neurodevelopmental disease characterized by social deficits and repetitive behaviors. While heterozygous SHANK3 mutations are usually the types of mutations associated with idiopathic autism in patients, heterozygous deletion of Shank3 gene in mice does not commonly induce ASD-related behavioral deficit. Here, we used in-vivo and ex-vivo approaches to demonstrate that region-specific neonatal downregulation of Shank3 in the Nucleus Accumbens promotes D1R-medium spiny neurons (D1R-MSNs) hyperexcitability and upregulates Transient Receptor Potential Vanilloid 4 (Trpv4) to impair social behavior. Interestingly, genetically vulnerable Shank3+/− mice, when challenged with Lipopolysaccharide to induce an acute inflammatory response, showed similar circuit and behavioral alterations that were rescued by acute Trpv4 inhibition. Altogether our data demonstrate shared molecular and circuit mechanisms between ASD-relevant genetic alterations and environmental insults, which ultimately lead to sociability dysfunctions.


eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
John P Gillies ◽  
Janice M Reimer ◽  
Eva P Karasmanis ◽  
Indrajit Lahiri ◽  
Zaw Min Htet ◽  
...  

The lissencephaly 1 gene, LIS1, is mutated in patients with the neurodevelopmental disease lissencephaly. The Lis1 protein is conserved from fungi to mammals and is a key regulator of cytoplasmic dynein-1, the major minus-end-directed microtubule motor in many eukaryotes. Lis1 is the only dynein regulator known to bind directly to dynein's motor domain, and by doing so alters dynein's mechanochemistry. Lis1 is required for the formation of fully active dynein complexes, which also contain essential cofactors: dynactin and an activating adaptor. Here, we report the first high-resolution structure of the yeast dynein–Lis1 complex. Our 3.1Å structure reveals, in molecular detail, the major contacts between dynein and Lis1 and between Lis1's ß-propellers. Structure-guided mutations in Lis1 and dynein show that these contacts are required for Lis1's ability to form fully active human dynein complexes and to regulate yeast dynein's mechanochemistry and in vivo function.


2022 ◽  
Author(s):  
Gabriella L. Robertson ◽  
Stellan Riffle ◽  
Mira Patel ◽  
Andrea Marshall ◽  
Heather Beasley ◽  
...  

Mitochondria and peroxisomes are both dynamic signaling organelles that constantly undergo fission. While mitochondrial fission is known to coordinate cellular metabolism, proliferation, and apoptosis, the physiological relevance of peroxisome dynamics and the implications for cell fate are not fully understood. DRP1 (dynamin-related protein 1) is an essential GTPase that executes both mitochondrial and peroxisomal fission. Patients with de novo heterozygous missense mutations in the gene that encodes DRP1, DNM1L, present with encephalopathy due to defective mitochondrial and peroxisomal fission (EMPF1). EMPF1 is a devastating neurodevelopmental disease with no effective treatment. To interrogate the mechanisms by which DRP1 mutations cause cellular dysfunction, we utilized human-derived fibroblasts from patients with mutations in DRP1 who present with EMPF1. As expected, patient cells display elongated mitochondrial morphology and lack of fission. Patient cells display a lower coupling efficiency of the electron transport chain, increased proton leak, and upregulation of glycolysis. In addition to these metabolic abnormalities, mitochondrial hyperfusion results in aberrant cristae structure and hyperpolarized mitochondrial membrane potential, both of which are tightly linked to the changes in metabolism. Peroxisome structure is also severely elongated in patient cells and results in a potential functional compensation of fatty acid oxidation. Understanding the mechanism by which DRP1 mutations cause these metabolic changes will give insight into the role of mitochondrial dynamics in cristae maintenance and the metabolic capacity of the cell, as well as the disease mechanism underlying EMPF1.


2021 ◽  
Author(s):  
Brennan H Baker ◽  
Shaoyi Zhang ◽  
Jeremy M Simon ◽  
Sarah M McLarnan ◽  
Wendy K Chung ◽  
...  

De novo mutations contribute to a large proportion of sporadic psychiatric and developmental disorders, yet the potential role of environmental carcinogens as drivers of causal de novo mutations in neurodevelopmental disorders is poorly studied. We demonstrate that several mutagens, including polycyclic aromatic hydrocarbons (PAHs), disproportionately mutate genes related to neurodevelopmental disorders including autism spectrum disorders (ASD), schizophrenia, and attention deficit hyperactivity disorder (ADHD). Other disease genes including amyotrophic lateral sclerosis (ALS), Alzheimers disease, congenital heart disease, orofacial clefts, and coronary artery disease were generally not mutated more than expected. Our findings support a new paradigm of neurodevelopmental disease etiology driven by a contribution of environmentally induced rather than random mutations.


2021 ◽  
Vol 22 (24) ◽  
pp. 13652
Author(s):  
Eleonora Persoons ◽  
Sara Kerselaers ◽  
Thomas Voets ◽  
Joris Vriens ◽  
Katharina Held

Sex hormone steroidal drugs were reported to have modulating actions on the ion channel TRPM3. Pregnenolone sulphate (PS) presents the most potent known endogenous chemical agonist of TRPM3 and affects several gating modes of the channel. These includes a synergistic action of PS and high temperatures on channel opening and the PS-induced opening of a noncanonical pore in the presence of other TRPM3 modulators. Moreover, human TRPM3 variants associated with neurodevelopmental disease exhibit an increased sensitivity for PS. However, other steroidal sex hormones were reported to influence TRPM3 functions with activating or inhibiting capacity. Here, we aimed to answer how DHEAS, estradiol, progesterone and testosterone act on the various modes of TRPM3 function in the wild-type channel and two-channel variants associated with human disease. By means of calcium imaging and whole-cell patch clamp experiments, we revealed that all four drugs are weak TRPM3 agonists that share a common steroidal interaction site. Furthermore, they exhibit increased activity on TRPM3 at physiological temperatures and in channels that carry disease-associated mutations. Finally, all steroids are able to open the noncanonical pore in wild-type and DHEAS also in mutant TRPM3. Collectively, our data provide new valuable insights in TRPM3 gating, structure-function relationships and ligand sensitivity.


Author(s):  
Shwetambari Morghade ◽  
Mohammed Irshad Qureshi ◽  
Rakesh Krishna Kovela

Introduction: Developmental Coordination Disorder (DCD) is a neurodevelopmental disease that inhibits muscle coordination that affects everyday life tasks and academic achievement. Children with DCD are often characterized as "clumsy" and "uncoordinated" and often lead to performance problems that most often create (TD) children can easily execute. Generally, treatments for DCD are not expected to succeed and the disease has no treatment. Therapies, on the other hand, will include skills, solutions, and accommodations that make it simpler for children with DCD to execute the motor activities required in everyday life and school settings. Some studies emphasize that child’s developmental status plays an important role in academic performance, but there is limited evidence which focuses on fine motor performance in children suspected of DCD, and its effect on their handwriting and academic performance. Methodology: This observational cross-sectional study will be conducted at several schools around Wardha, with 1511 school-aged children of both genders ranging in age from 8 to 14 years participating. Discussion: Some studies stress the importance of a child's developmental status in academic achievement, however, there is minimal data that focus on fine motor skills in children suspected of having DCD and its impact on handwriting and academic performance. Conclusion: This study will help us in determining the prevalence of developmental coordination disorder and the relationship between handwriting and academic performance in these children.


2021 ◽  
Vol 14 ◽  
Author(s):  
Qi Tian ◽  
Li Shu ◽  
Pu Zhang ◽  
Ting Zeng ◽  
Yang Cao ◽  
...  

Background:MN1 C-terminal truncation (MCTT) syndrome is caused by variants in the C-terminal region of MN1, which were first described in 2020. The clinical features of MCTT syndrome includes severe neurodevelopmental and brain abnormalities. We reported on a patient who carried the MN1 variant in the C-terminal region with mild developmental delay and normal brain magnetic resonance image (MRI).Methods: Detailed clinical information was collected in the pedigree. Whole-exome sequencing (WES) accompanied with Sanger sequencing validation were performed. A functional study based on HEK239T cells was performed.Results: A de novo heterozygous c.3734delT: p.L1245fs variant was detected. HEK239T cells transinfected with the de novo variant showed decreased proliferation, enhanced apoptotic rate, and MN1 nuclear aggregation.Conclusion: Our study expended the clinical and genetic spectrum of MCTT which contributes to the genetic counseling of the MN1 gene.


2021 ◽  
Author(s):  
Milos Kostic ◽  
Joe J. Raymond ◽  
Beata Henry ◽  
Tayfun Tumkaya ◽  
Jivan Khlghatyan ◽  
...  

Copy number variants (CNVs) that delete or duplicate 30 genes within the 16p11.2 genomic region give rise to a range of neurodevelopmental phenotypes with high penetrance in humans. Despite the identification of this small region, the mechanisms by which 16p11.2 CNVs lead to disease are unclear. Relevant models, like human cortical organoids (hCOs), are needed to understand the human-specific mechanisms of neurodevelopmental disease. We generated hCOs from 18 patients and controls, profiling 167,958 cells with single cell (sc)RNA-seq. Analysis revealed neuronal-specific differential expression of genes outside of the 16p11.2 region that were related to cell-cell adhesion, neuronal projection growth, and neurodevelopmental disorders. Furthermore, 16p11.2 deletion syndrome organoids exhibited reduced mRNA and protein levels of RBFOX1, a gene which can also harbor CNVs linked to neurodevelopmental phenotypes. We found that many genes previously shown to be regulated by RBFOX1 are also perturbed in organoids from patients with 16p11.2 deletion syndrome, and thus identified a novel link between independent CNVs associated with neuronal development and autism. Overall, this work suggests convergent signaling, which indicates the possibility of a common therapeutic mechanism across multiple rare neuronal diseases.


2021 ◽  
Author(s):  
Stamatina Tzanoulinou ◽  
Stefano Musardo ◽  
Alessandro Contestabile ◽  
Sebastiano Bariselli ◽  
Giulia Casarotto ◽  
...  

Autism spectrum disorder is a neurodevelopmental disease characterized by social deficits and repetitive behaviors. The high heterogeneity of the disease may be explained by gene and environmental interactions and potential risk factors include immune dysfunctions and immune-mediated co-morbidities. Mutations in the SHANK3 gene have been recognized as a genetic risk factor for ASD. While heterozygous SHANK3 mutations are usually the types of mutations associated with idiopathic autism in patients, heterozygous deletion of Shank3 gene in mice does not commonly induce ASD-related behavioural deficit. Here, we used in-vivo and ex-vivo approaches to demonstrate that region-specific neonatal downregulation of Shank3 in the NAc promotes D1R-MSN hyperexcitability and upregulates Trpv4 to impair social behaviour. Interestingly, genetically vulnerable Shank3+/- mice, when challenged with Lipopolysaccharide to induce inflammatory response, showed similar circuit and behavioural alterations that were rescued by acute Trpv4 inhibition. Altogether our data demonstrate shared molecular and circuit mechanisms between ASD-relevant genetic alterations and environmental insults, which ultimately lead to sociability dysfunctions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shani Poleg ◽  
Emad Kourieh ◽  
Angela Ruban ◽  
Guy Shapira ◽  
Noam Shomron ◽  
...  

AbstractAutism spectrum disorder (ASD) is a neurodevelopmental disease with a wide spectrum of manifestation. The core symptoms of ASD are persistent deficits in social communication, and restricted and repetitive patterns of behavior, interests, or activities. These are often accompanied by intellectual disabilities. At present, there is no designated effective treatment for the core symptoms and co-morbidities of ASD. Recently, interest is rising in medical cannabis as a treatment for ASD, with promising clinical data. However, there is a notable absence of basic pre-clinical research in this field. In this study, we investigate the behavioral and biochemical effects of long-term oral treatment with CBD-enriched medical cannabis oil in a human mutation-based Shank3 mouse model of ASD. Our findings show that this treatment alleviates anxiety and decreases repetitive grooming behavior by over 70% in treated mutant mice compared to non-treated mutant mice. Furthermore, we were able to uncover the involvement of CB1 receptor (CB1R) signaling in the Avidekel oil mechanism, alongside a mitigation of cerebrospinal fluid (CSF) glutamate concentrations. Subsequently, RNA sequencing (RNA seq) of cerebellar brain samples revealed changes in mRNA expression of several neurotransmission-related genes post-treatment. Finally, our results question the relevancy of CBD enrichment of medical cannabis for treating the core symptoms of ASD, and emphasize the importance of the THC component for alleviating deficits in repetitive and social behaviors in ASD.


Sign in / Sign up

Export Citation Format

Share Document