Theoretical and experimental investigation of stress redistribution in open hole composite laminates due to damage accumulation

2005 ◽  
Vol 36 (2) ◽  
pp. 163-171 ◽  
Author(s):  
E IARVE ◽  
D MOLLENHAUER ◽  
R KIM
2021 ◽  
Vol 259 ◽  
pp. 113463
Author(s):  
Binbin Liao ◽  
Zhongwei Zhang ◽  
Liping Sun ◽  
Jianwu Zhou ◽  
Panding Wang ◽  
...  

2021 ◽  
Vol 1130 (1) ◽  
pp. 012004
Author(s):  
R Murugan ◽  
S Daniel Mc Arthur ◽  
G Bharath ◽  
S Abinesh ◽  
K Cibi Kumar ◽  
...  

2021 ◽  
Vol 262 ◽  
pp. 113628
Author(s):  
Zhaoyang Ma ◽  
Jianlin Chen ◽  
Qingda Yang ◽  
Zheng Li ◽  
Xianyue Su

2020 ◽  
Vol 11 (1) ◽  
pp. 185
Author(s):  
Jian Shi ◽  
Mingbo Tong ◽  
Chuwei Zhou ◽  
Congjie Ye ◽  
Xindong Wang

The failure types and ultimate loads for eight carbon-epoxy laminate specimens with a central circular hole subjected to tensile load were tested experimentally and simulated using two different progressive failure analysis (PFA) methodologies. The first model used a lamina level modeling based on the Hashin criterion and the Camanho stiffness degradation theory to predict the damage of the fiber and matrix. The second model implemented a micromechanical analysis technique coined the generalized method of cells (GMC), where the 3D Tsai–Hill failure criterion was used to govern matrix failure, and the fiber failure was dictated by the maximum stress criterion. The progressive failure methodology was implemented using the UMAT subroutine within the ABAQUS/implicit solver. Results of load versus displacement and failure types from the two different models were compared against experimental data for the open hole laminates subjected to tensile displacement load. The results obtained from the numerical simulation and experiments showed good agreement. Failure paths and accurate damage contours for the tested specimens were also predicted.


Sign in / Sign up

Export Citation Format

Share Document