Genomic imprinting and seed development: endosperm formation with and without sex

2001 ◽  
Vol 4 (1) ◽  
pp. 21-27 ◽  
Author(s):  
Ueli Grossniklaus ◽  
Charles Spillane ◽  
Damian R Page ◽  
Claudia Köhler
2021 ◽  
Vol 22 (15) ◽  
pp. 7907
Author(s):  
Joanna Rojek ◽  
Matthew R. Tucker ◽  
Michał Rychłowski ◽  
Julita Nowakowska ◽  
Małgorzata Gutkowska

Auxin is a key regulator of plant development affecting the formation and maturation of reproductive structures. The apoplastic route of auxin transport engages influx and efflux facilitators from the PIN, AUX and ABCB families. The polar localization of these proteins and constant recycling from the plasma membrane to endosomes is dependent on Rab-mediated vesicular traffic. Rab proteins are anchored to membranes via posttranslational addition of two geranylgeranyl moieties by the Rab Geranylgeranyl Transferase enzyme (RGT), which consists of RGTA, RGTB and REP subunits. Here, we present data showing that seed development in the rgtb1 mutant, with decreased vesicular transport capacity, is disturbed. Both pre- and post-fertilization events are affected, leading to a decrease in seed yield. Pollen tube recognition at the stigma and its guidance to the micropyle is compromised and the seed coat forms incorrectly. Excess auxin in the sporophytic tissues of the ovule in the rgtb1 plants leads to an increased tendency of autonomous endosperm formation in unfertilized ovules and influences embryo development in a maternal sporophytic manner. The results show the importance of vesicular traffic for sexual reproduction in flowering plants, and highlight RGTB1 as a key component of sporophytic-filial signaling.


If a mother sometimes has offspring by more than one father and if genes in the offspring are active in acquiring resources from maternal tissues, theory predicts that alleles at some loci in the offspring will evolve different patterns of gene expression depending on the gene’s parent of origin (genomic imprinting). The criteria for the evolution of imprinting are satisfied in many seed plants, and imprinting has been reported from the endosperm of angiosperm seeds. This paper’s purpose is to show that imprinting phenomena in endosperm can provide a coherent explanation of some failures of experimental crosses, and of the prevalence of pseudogamy among apomictic angiosperms. As a consequence of imprinting, seed development comes to depend on a particular ratio of maternal and paternal genomes in endosperm. This ratio is normally two maternal genomes to each paternal genome. Imprinting probably accounts for the failure of crosses between diploids and their autotetraploids, because the 2m: 1p ratio is disturbed in such crosses. Imprinting may also account for the breakdown of endosperm in crosses between related species, if the expression of maternal and paternal genomes in endosperm is out of balance. When a cross fails because of such an imbalance, the reciprocal cross will have the opposite imbalance and a complementary phenotype would be expected. The embryological evidence is consistent with this prediction. For example, many incompatible crosses show delayed wall formation in one direction of the cross, but precocious wall formation in the other direction. Typically, seed development can be classified as showing ‘paternal excess’ or ‘maternal excess’. Paternal excess is associated with unusually vigorous early growth of the endosperm, and maternal excess with the opposite. This pattern is consistent with natural selection on paternal gene expression favouring larger seeds. Genetic evidence from maize confirms an association between paternal gene expression and larger kernel size, and maternal gene expression and smaller kernel size. Genomic imprinting creates a requirement for both maternal and paternal genomes in imprinted tissues. In mammals, imprinting is expressed in derivatives of the zygote. The requirement for a paternal genome has constituted a block to the evolution of parthenogenesis, because all the genes in a parthenogenetic embryo are maternal. In angiosperms, imprinting is primarily expressed in the endosperm rather than the embryo. If the effects of imprinting in the embryo are small, an asexually produced embryo can develop, provided that it is associated with a viable endosperm. Many a Pom^ ts are pseudogamous. That is, the endosperm is fertilized and contains maternal and paternal genes embryo is asexual and contains maternal genes only. Thus, the division of labour between the embryo the endosperm during development of the seed can be seen as a preadaptation for apomixis. Some apomicts are autonomous. That is, the embryo and the endosperm both develop without fertilization. Genomic imprinting in endosperm would seem to constitute a barrier to the evolution of autonomous apomixis. Thus, there is a problem, not previously appreciated, in understanding how autonomous apomixis is possible


2011 ◽  
Vol 23 (1) ◽  
pp. 16-26 ◽  
Author(s):  
Michael T. Raissig ◽  
Célia Baroux ◽  
Ueli Grossniklaus

1974 ◽  
Vol 22 (1) ◽  
pp. 13 ◽  
Author(s):  
EG Cuthbertson

A study of material from unstressed plants of Chondrilla juncea L. revealed a genetically based sterility in 3-4% of the achenes. Embryogeny is of the Asterad type but the basal cell cb divides horizontally before the vertical division in ca. Polyembryony occurred but seems rare; probably only one embryo in each ovule reaches maturity. The endosperm was nuclear at first, becoming cellular after a number of free mitoses. The outer layers persist in the seed. The uniseriate endothelium develops a persistent cuticle on its inner face, which becomes closely appressed to the remaining endosperm layer as the endothelium degenerates. Endosperm formation was erratic and independent of embryogeny. Because of the presence of aborted embryos associated with a well-developed endosperm, it is suggested that the degeneration is the result either of later formation of the endosperm or of unusually early cutinization of the endothelium.


Genetics ◽  
2008 ◽  
Vol 179 (2) ◽  
pp. 829-841 ◽  
Author(s):  
Alexander Ungru ◽  
Moritz K. Nowack ◽  
Matthieu Reymond ◽  
Reza Shirzadi ◽  
Manoj Kumar ◽  
...  

2020 ◽  
Vol 21 (24) ◽  
pp. 9618
Author(s):  
Lin Yang ◽  
Feng Xing ◽  
Qin He ◽  
Muhammad Tahir ul Qamar ◽  
Ling-Ling Chen ◽  
...  

Genomic imprinting is an epigenetic phenomenon in which a subset of genes express dependent on the origin of their parents. In plants, it is unclear whether imprinted genes are conserved between subspecies in rice. Here we identified imprinted genes from embryo and endosperm 5–7 days after pollination from three pairs of reciprocal hybrids, including inter-subspecies, japonica intra-subspecies, and indica intra-subspecies reciprocal hybrids. A total of 914 imprinted genes, including 546 in inter-subspecies hybrids, 211 in japonica intra-subspecies hybrids, and 286 in indica intra-subspecies hybrids. In general, the number of maternally expressed genes (MEGs) is more than paternally expressed genes (PEGs). Moreover, imprinted genes tend to be in mini clusters. The number of shared genes by R9N (reciprocal crosses between 9311 and Nipponbare) and R9Z (reciprocal crosses between 9311 and Zhenshan 97), R9N and RZN (reciprocal crosses between Zhonghua11 and Nipponbare), R9Z and RZN was 72, 46, and 16. These genes frequently involved in energy metabolism and seed development. Five imprinted genes (Os01g0151700, Os07g0103100, Os10g0340600, Os11g0679700, and Os12g0632800) are commonly detected in all three pairs of reciprocal hybrids and were validated by RT-PCR sequencing. Gene editing of two imprinted genes revealed that both genes conferred grain filling. Moreover, 15 and 27 imprinted genes with diverse functions in rice were shared with Arabidopsis and maize, respectively. This study provided valuable resources for identification of imprinting genes in rice or even in cereals.


2008 ◽  
Vol 35 (5) ◽  
pp. 382 ◽  
Author(s):  
Yong-Ling Ruan ◽  
Danny J. Llewellyn ◽  
Qing Liu ◽  
Shou-Min Xu ◽  
Li-Min Wu ◽  
...  

Successful seed development requires coordinated interaction of the endosperm and embryo. In most dicotyledonous seeds, the endosperm is crushed and absorbed by the expanding embryo in the later stages of seed development. Little is known about the metabolic interaction between the two filial tissues early in seed development. We examined the potential role of sucrose synthase (Sus) in the endosperm development of cotton. Sus was immunologically localised in the cellularising endosperm, but not in the heart-stage embryo at 10 days after anthesis. The activities of Sus and acid invertase were significantly higher in the endosperm than in the young embryos, which corresponded to a steep concentration difference in hexoses between the endosperm and the embryo. This observation indicates a role for the endosperm in generating hexoses for the development of the two filial tissues. Interestingly, Sus expression and starch deposition were spatially separated in the seeds. Silencing the expression of Sus in the endosperm using an RNAi approach led to the arrest of early seed development. Histochemical analyses revealed a significant reduction in cellulose and callose in the deformed endosperm cells of the Sus-suppressed seed. The data indicate a critical role of Sus in early seed development through regulation of endosperm formation.


Sign in / Sign up

Export Citation Format

Share Document