Glutathione S-transferase M1 genotype influences sister chromatid exchange induction but not adaptive response in human lymphocytes treated with 1,2-epoxy-3-butene

Author(s):  
Maria Sąsiadek ◽  
Ari Hirvonen ◽  
Leszek Noga ◽  
Małgorzata Paprocka-Borowicz ◽  
Hannu Norppa
Author(s):  
Rui M. Gil da Costa ◽  
Patrícia Coelho ◽  
Rosa Sousa ◽  
Margarida M.S.M. Bastos ◽  
Beatriz Porto ◽  
...  

2017 ◽  
Vol 12 (7) ◽  
pp. 1934578X1701200
Author(s):  
Treetip Ratanavalachai ◽  
Sumon Thitiorul ◽  
Chalerm Jansom ◽  
Wantha Jenkhetkan ◽  
Arunporn Itharat

Bee pollen has been used as a food supplement and as a traditional medicine for thousands of years. Our study demonstrated that by in vitro sister chromatid exchange assay, Mimosa pudica crude bee pollen extract (0.005-5.0 μg/mL CE) from Chiangmai, Northern Thailand, increased genotoxicity in human lymphocytes at concentrations of 0.005 and 0.5 μg/mL by 20% and 24% respectively, compared to the RPMI control. Its defatted extract (DE) at 0.005-5.0 μg/mL increased the activities by 24–32% whereas the lipid extract (LE) at 0.00125 μg/mL but not at 0.0125–1.25 μg/mL increased the activities by 25%. Only CE at 5.0 μg/mL induced cytotoxicity. Pretreatments of CE, DE, and LE at 0.5, 5, and 0.00125 μg/mL induced antigenotoxicities against doxorubicin, a potent genotoxic chemotherapeutic agent by 24%, 28%, and 16%, respectively. Their protective mechanisms are feasibly involved with α-tocopherol and phenolic contents such as gallic acid and ferulic acid.


1999 ◽  
Vol 88 (01) ◽  
pp. 7-16 ◽  
Author(s):  
D Anderson ◽  
AJ Edwards ◽  
P Fisher ◽  
DP Lovell

AbstractPrevious studies have been interpreted as suggesting that low concentrations of N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) have an adaptive effect in the cultured lymphocytes of responsive donors (that is, the cells are protected against the mutagenic effects of a subsequent challenge with a higher concentration of MNNG). The objectives of the present study were to investigate, under stringent experimental conditions, whether a protective effect exists at very low and extremely low doses of MNNG (10−8 and 10−24M, respectively).Peripheral blood lymphocytes from a donor considered responsive in a previous study were stimulated to divide and were cultured under standard conditions. Pre-adaptive treatments with dilutions of MNNG were added to the cultures repeatedly before a challenge treatment with MNNG. Bromodeoxyuridine was added at the same time as the challenge treatment and, following mitotic arrest, cells were differentially stained so that the number of sister chromatid exchanges (SCEs) could be counted. The study was designed to address potential criticisms of earlier studies which did not include replicate cultures. Samples of blood were divided into two identical batches for independent processing. Five replicate cultures were prepared for each combination of pre-adaptive and challenge treatments in each batch. The complete experiment was repeated to provide a further test of the consistency of results. Five replicates per treatment combination were chosen in an attempt to provide an experiment of adequate statistical power. Considerable precautions were taken to minimise the effect of factors outside experimental control on the results. Scoring was done by three scorers. In order to minimise inter-scorer variation, 240 cells were scored at each treatment observation (five cells per scorer, three scorers per culture, four cultures per batch, two batches per experiment and two experiments). The study was designed in this way to take account of the sources of variability to ensure that any response obtained would exceed that obtainable by experimental variability alone. A high level of quality assurance monitoring was undertaken throughout the investigation. Two measures of SCE induction were used: (i) the mean frequency of SCEs; (ii) proportion of cells with at least 20 SCEs. In both experiments, the challenge concentration of MNNG significantly increased SCE frequency. There were, however, highly significant differences between the two experiments. The proportion of high frequency cells (HFCs) in Experiment 1 was increased significantly; the proportion of HFCs was also increased in Experiment 2, but the increase was not statistically significant. The pre-adaptive concentrations of MNNG included an extremely low dilution of 6.8 × 10−24 M and a very low dilution of 6.8 × 10−8 M in Experiment 1 and 1.4 × 10−7 M in Experiment 2. The various pre-adaptive concentrations used had no consistent protective effect against the SCE-inducing capacity of the challenge concentration of MNNG of 6.8 × 10−6 M.It is concluded that an adaptive response to the alkylating agent MNNG could not be demonstrated in cultured human lymphocytes. Neither a very low nor an extremely low dilution of MNNG elicited an adaptive response in terms of SCE induction (measured either as SCE frequency or as proportion of HFCs). This is in contradiction to previous reports published by us and other groups. This study was carefully designed with large numbers of replicates, a preliminary statistical power calculation, predefined comparisons and extensive quality assurance at each treatment administration. Despite these precautions the variability between scorers and between batches was much larger than anticipated. This resulted in some statistically significant differences, but these are likely to be false positives. Our findings indicate the need for such methodological refinement in human cell adaptive response studies.


Sign in / Sign up

Export Citation Format

Share Document