A radar data quality control scheme used in hydrology

Author(s):  
T Einfalt ◽  
B Maul-Kötter ◽  
S Spies
2020 ◽  
Vol 27 (4) ◽  
Author(s):  
Daniel Michelson ◽  
Bjarne Hansen ◽  
Dominik Jacques ◽  
François Lemay ◽  
Peter Rodriguez

2015 ◽  
Vol 32 (6) ◽  
pp. 1209-1223 ◽  
Author(s):  
Valliappa Lakshmanan ◽  
Christopher Karstens ◽  
John Krause ◽  
Kim Elmore ◽  
Alexander Ryzhkov ◽  
...  

AbstractRecently, a radar data quality control algorithm has been devised to discriminate between weather echoes and echoes due to nonmeteorological phenomena, such as bioscatter, instrument artifacts, and ground clutter (Lakshmanan et al.), using the values of polarimetric moments at and around a range gate. Because the algorithm was created by optimizing its weights over a large reference dataset, statistical methods can be employed to examine the importance of the different variables in the context of discriminating between weather and no-weather echoes. Among the variables studied for their impact on the ability to identify and censor nonmeteorological artifacts from weather radar data, the method of successive permutations ranks the variance of Zdr, the reflectivity structure of the virtual volume scan, and the range derivative of the differential phase on propagation [PhiDP (Kdp)] as the most important. The same statistical framework can be used to study the impact of calibration errors in variables such as Zdr. The effects of Zdr calibration errors were found to be negligible.


2017 ◽  
Author(s):  
Birgit Eibl ◽  
Reinhold Steinacker

Abstract. Meteorological in situ observational data comes with a variety of errors and uncertainties. Any further usage of this data requires a sophisticated quality control to detect, quantify and possibly eliminate or at least to reduce errors and to increase the value of the information. It must be assumed, that each observational value Ψobs is contaminated by errors Ψerr so that the true state Ψtrue is not known. Different kinds of errors can be identified. Each of them has different characteristics and therefore has to be detected through appropriate methods. For years, various methods as a self consistency test, clustering and nearest neighbour techniques have been implemented in the complex quality control scheme of the Vienna Enhanced Resolution Analysis (VERA). Thereby former elaborations adressed the elimination and treatment of gross errors. In successioon the present investigation adresses the determination of stochastic and deterministic perturbations. In a first step we implemented the method to split up the observational value to smooth out the stochastic errors to the best and retain deterministic perturbations thereafter. Through controlled experiments on two dimensions the performance and limitations of the complex quality control scheme has been investigated. The treatment of errors and signals on different scales and the limit of the usability of this property is the main focus of the presented investigation. We highly recommend to use the method for data quality control within a high resolution model analysing spatially distributed data in highly complex terrain.


2020 ◽  
Vol 37 (9) ◽  
pp. 1521-1537
Author(s):  
Lin Tang ◽  
Jian Zhang ◽  
Micheal Simpson ◽  
Ami Arthur ◽  
Heather Grams ◽  
...  

AbstractThe Multi-Radar-Multi-Sensor (MRMS) system was transitioned into operations at the National Centers for Environmental Prediction in the fall of 2014. It provides high-quality and high-resolution severe weather and precipitation products for meteorology, hydrology, and aviation applications. Among processing modules, the radar data quality control (QC) plays a critical role in effectively identifying and removing various nonhydrometeor radar echoes for accurate quantitative precipitation estimation (QPE). Since its initial implementation in 2014, the radar QC has undergone continuous refinements and enhancements to ensure its robust performance across seasons and all regions in the continental United States and southern Canada. These updates include 1) improved melting-layer delineation, 2) clearance of wind farm contamination, 3) mitigation of corrupt data impacts due to hardware issues, 4) mitigation of sun spikes, and 5) mitigation of residual ground/lake/sea clutter due to sidelobe effects and anomalous propagation. This paper provides an overview of the MRMS radar data QC enhancements since 2014.


Sign in / Sign up

Export Citation Format

Share Document