scholarly journals Safety, pharmacokinetics, and antimalarial activity of the novel plasmodium eukaryotic translation elongation factor 2 inhibitor M5717: a first-in-human, randomised, placebo-controlled, double-blind, single ascending dose study and volunteer infection study

Author(s):  
James S McCarthy ◽  
Özkan Yalkinoglu ◽  
Anand Odedra ◽  
Rebecca Webster ◽  
Claude Oeuvray ◽  
...  
2020 ◽  
Vol 71 (10) ◽  
pp. e657-e664 ◽  
Author(s):  
James S McCarthy ◽  
Cristina Donini ◽  
Stephan Chalon ◽  
John Woodford ◽  
Louise Marquart ◽  
...  

Abstract Background MMV390048 is the first Plasmodium phosphatidylinositol 4-kinase inhibitor to reach clinical development as a new antimalarial. We aimed to characterize the safety, pharmacokinetics, and antimalarial activity of a tablet formulation of MMV390048. Methods A 2-part, phase 1 trial was conducted in healthy adults. Part 1 was a double-blind, randomized, placebo-controlled, single ascending dose study consisting of 3 cohorts (40, 80, 120 mg MMV390048). Part 2 was an open-label volunteer infection study using the Plasmodium falciparum induced blood-stage malaria model consisting of 2 cohorts (40 mg and 80 mg MMV390048). Results Twenty four subjects were enrolled in part 1 (n = 8 per cohort, randomized 3:1 MMV390048:placebo) and 15 subjects were enrolled in part 2 (40 mg [n = 7] and 80 mg [n = 8] cohorts). One subject was withdrawn from part 2 (80 mg cohort) before dosing and was not included in analyses. No serious or severe adverse events were attributed to MMV390048. The rate of parasite clearance was greater in subjects administered 80 mg compared to those administered 40 mg (clearance half-life 5.5 hours [95% confidence interval {CI}, 5.2–6.0 hours] vs 6.4 hours [95% CI, 6.0–6.9 hours]; P = .005). Pharmacokinetic/pharmacodynamic modeling estimated a minimum inhibitory concentration of 83 ng/mL and a minimal parasiticidal concentration that would achieve 90% of the maximum effect of 238 ng/mL, and predicted that a single 120-mg dose would achieve an adequate clinical and parasitological response with 92% certainty. Conclusions The safety, pharmacokinetics, and pharmacodynamics of MMV390048 support its further development as a partner drug of a single-dose combination therapy for malaria. Clinical Trials Registration NCT02783820 (part 1); NCT02783833 (part 2).


2021 ◽  
Author(s):  
Shiyou Liu ◽  
Tsubasa S. Matsui ◽  
Na Kang ◽  
Shinji Deguchi

Stress fibers (SFs), which are actomyosin structures, reorganize in response to various cues to maintain cellular homeostasis. Currently, the protein components of SFs are only partially identified, limiting our understanding of their responses. Here we isolate SFs from human fibroblasts HFF-1 to determine with proteomic analysis the whole protein components and how they change with replicative senescence (RS), a state where cells decline in ability to replicate after repeated divisions. We found that at least 263 proteins are associated with SFs, and 101 of them are upregulated with RS, by which SFs become larger in size. Among them, we focused on eEF2 (eukaryotic translation elongation factor 2) as it exhibited upon RS the most significant increase in abundance. We show that eEF2 is critical to the reorganization and stabilization of SFs in senescent fibroblasts. Our findings provide a novel molecular basis for SFs to be reinforced to resist cellular senescence.


Author(s):  
Shiyou Liu ◽  
Tsubasa S. Matsui ◽  
Na Kang ◽  
Shinji Deguchi

Stress fibers (SFs), which are actomyosin structures, reorganize in response to various cues to maintain cellular homeostasis. Currently, the protein components of SFs are only partially identified, limiting our understanding of their responses. Here we isolate SFs from human fibroblasts HFF-1 to determine with proteomic analysis the whole protein components and how they change with replicative senescence (RS), a state where cells decline in ability to replicate after repeated divisions. We found that at least 135 proteins are associated with SFs, and 63 of them are upregulated with RS, by which SFs become larger in size. Among them, we focused on eEF2 (eukaryotic translation elongation factor 2) as it exhibited upon RS the most significant increase in abundance. We show that eEF2 is critical to the reorganization and stabilization of SFs in senescent fibroblasts. Our findings provide a novel molecular basis for SFs to be reinforced to resist cellular senescence.


2018 ◽  
Vol 293 (14) ◽  
pp. 5220-5229 ◽  
Author(s):  
Denis Susorov ◽  
Nikita Zakharov ◽  
Ekaterina Shuvalova ◽  
Alexander Ivanov ◽  
Tatiana Egorova ◽  
...  

2019 ◽  
Vol 400 (4) ◽  
pp. 501-512 ◽  
Author(s):  
Rita Mateus-Seidl ◽  
Sebastian Stahl ◽  
Stefan Dengl ◽  
Fabian Birzele ◽  
Hedda Herrmuth ◽  
...  

Abstract The functionality of eukaryotic translation elongation factor 2 (eEF2) is modulated by phosphorylation, eEF2 is simultaneously the molecular target of ADP-ribosylating toxins. We analyzed the interplay between phosphorylation and diphthamide-dependent ADP-ribosylation. Phosphorylation does not require diphthamide, eEF2 without it still becomes phosphorylated. ADP-ribosylation not only modifies the H715 diphthamide but also inhibits phosphorylation of S595 located in proximity to H715, and stimulates phosphorylation of T56. S595 can be phosphorylated by CDK2 and CDK1 which affects EEF2K-mediated T56-phosphorylation. Thus, ADP-ribosylation and S595-phosphorylation by kinases occur within the same vicinity and both trigger T56-phosphorylation. Diphthamide is surface-accessible permitting access to ADP-ribosylating enzymes, the adjacent S595 side chain extends into the interior. This orientation is incompatible with phosphorylation, neither allowing kinase access nor phosphate attachment. S595 phosphorylation must therefore be accompanied by structural alterations affecting the interface to ADP-ribosylating toxins. In agreement with that, replacement of S595 with Ala, Glu or Asp prevents ADP-ribosylation. Phosphorylation (starvation) as well as ADP-ribosylation (toxins) inhibit protein synthesis, both affect the S595/H715 region of eEF2, both trigger T57-phosphorylation eliciting similar transcriptional responses. Phosphorylation is short lived while ADP-ribosylation is stable. Thus, phosphorylation of the S595/H715 ‘modifier region’ triggers transient interruption of translation while ADP-ribosylation arrests irreversibly.


Sign in / Sign up

Export Citation Format

Share Document