Implicit rule-based fuzzy-neural networks using the identification algorithm of GA hybrid scheme based on information granulation

2002 ◽  
Vol 16 (4) ◽  
pp. 247-263 ◽  
Author(s):  
Sung-Kwun Oh ◽  
Witold Pedrycz ◽  
Ho-Sung Park
Author(s):  
BYOUNG-JUN PARK ◽  
WITOLD PEDRYCZ ◽  
SUNG-KWUN OH

In this study, we introduce an advanced architecture of genetically optimized Hybrid Fuzzy Neural Networks (gHFNN) and develop a comprehensive design methodology supporting their construction. A series of numeric experiments is included to illustrate the performance of the networks. The construction of gHFNN exploits fundamental technologies of Computational Intelligence (CI), namely fuzzy sets, neural networks, and genetic algorithms (GAs). The architecture of the gHFNNs results from a synergistic usage of the genetic optimization-driven hybrid system generated by combining Fuzzy Neural Networks (FNN) with Polynomial Neural Networks (PNN). In this tandem, a FNN supports the formation of the condition part of the rule-based structure of the gHFNN. The conclusion part of the gHFNN is designed using PNNs. We distinguish between two types of the simplified fuzzy inference rule-based FNN structures showing how this taxonomy depends upon the type of a fuzzy partition of input variables. As to the conclusion part of the gHFNN, the development of the PNN dwells on two general optimization mechanisms: the structural optimization is realized via GAs whereas in case of the parametric optimization we proceed with a standard least square method-based learning. To evaluate the performance of the gHFNN, we experimented with three representative numerical examples. A comparative analysis demonstrates that the proposed gHFNN come with higher accuracy as well as superb predictive capabilities when compared with other neurofuzzy models.


2011 ◽  
Vol 15 (1) ◽  
pp. 185-196 ◽  
Author(s):  
Y.-M. Chiang ◽  
L.-C. Chang ◽  
M.-J. Tsai ◽  
Y.-F. Wang ◽  
F.-J. Chang

Abstract. Pumping stations play an important role in flood mitigation in metropolitan areas. The existing sewerage systems, however, are facing a great challenge of fast rising peak flow resulting from urbanization and climate change. It is imperative to construct an efficient and accurate operating prediction model for pumping stations to simulate the drainage mechanism for discharging the rainwater in advance. In this study, we propose two rule-based fuzzy neural networks, adaptive neuro-fuzzy inference system (ANFIS) and counterpropagation fuzzy neural network for on-line predicting of the number of open and closed pumps of a pivotal pumping station in Taipei city up to a lead time of 20 min. The performance of ANFIS outperforms that of CFNN in terms of model efficiency, accuracy, and correctness. Furthermore, the results not only show the predictive water levels do contribute to the successfully operating pumping stations but also demonstrate the applicability and reliability of ANFIS in automatically controlling the urban sewerage systems.


2010 ◽  
Vol 7 (5) ◽  
pp. 6725-6756 ◽  
Author(s):  
Y.-M. Chiang ◽  
L.-C. Chang ◽  
M.-J. Tsai ◽  
Y.-F. Wang ◽  
F.-J. Chang

Abstract. Pumping stations play an important role in flood mitigation in metropolitan areas. The existing sewerage systems, however, are facing a great challenge of fast rising peak flow resulting from urbanization and climate change. It is imperative to construct an efficient and accurate operating prediction model for pumping stations to simulate the drainage mechanism for discharging the rainwater in advance. In this study, we propose two rule-based fuzzy neural networks, adaptive neuro-fuzzy inference system (ANFIS) and counterpropagatiom fuzzy neural network (CFNN) for on-line predicting of the number of open and closed pumps of a pivotal pumping station in Taipei city up to a lead time of 20 min. The performance of ANFIS outperforms that of CFNN in terms of model efficiency, accuracy, and correctness. Furthermore, the results not only show the predictive water levels do contribute to the successfully operating pumping stations but also demonstrate the applicability and reliability of ANFIS in automatically controlling the urban sewerage systems.


Sign in / Sign up

Export Citation Format

Share Document