Genetically Optimized Hybrid Fuzzy Neural Networks: Analysis and Design of Rule-based Multi-layer Perceptron Architectures

Author(s):  
Sung-Kwun Oh ◽  
Witold Pedrycz
Author(s):  
Cleber Zanchettin ◽  
Teresa Bernarda Ludermir

Este trabalho investiga a utilização de Sistemas Híbridos Inteligentes no sistema de reconhecimento de padrões de um nariz artificial. São abordadas as arquiteturas conexionistas Multi-Layer Perceptron e Time Delay Neural Network; e as arquiteturas híbridas Feature-weighted Detector e Evolving Fuzzy Neural Networks. Além dos classificadores, um filtro Wavelet é avaliado como método de pré-processamento para os sinais de odores. Foram analisados sinais gerados por um nariz artificial, composto por um conjunto de sensores de polímeros condutores, exposto a duas bases de odores distintas.


Author(s):  
BYOUNG-JUN PARK ◽  
WITOLD PEDRYCZ ◽  
SUNG-KWUN OH

In this study, we introduce an advanced architecture of genetically optimized Hybrid Fuzzy Neural Networks (gHFNN) and develop a comprehensive design methodology supporting their construction. A series of numeric experiments is included to illustrate the performance of the networks. The construction of gHFNN exploits fundamental technologies of Computational Intelligence (CI), namely fuzzy sets, neural networks, and genetic algorithms (GAs). The architecture of the gHFNNs results from a synergistic usage of the genetic optimization-driven hybrid system generated by combining Fuzzy Neural Networks (FNN) with Polynomial Neural Networks (PNN). In this tandem, a FNN supports the formation of the condition part of the rule-based structure of the gHFNN. The conclusion part of the gHFNN is designed using PNNs. We distinguish between two types of the simplified fuzzy inference rule-based FNN structures showing how this taxonomy depends upon the type of a fuzzy partition of input variables. As to the conclusion part of the gHFNN, the development of the PNN dwells on two general optimization mechanisms: the structural optimization is realized via GAs whereas in case of the parametric optimization we proceed with a standard least square method-based learning. To evaluate the performance of the gHFNN, we experimented with three representative numerical examples. A comparative analysis demonstrates that the proposed gHFNN come with higher accuracy as well as superb predictive capabilities when compared with other neurofuzzy models.


2011 ◽  
Vol 15 (1) ◽  
pp. 185-196 ◽  
Author(s):  
Y.-M. Chiang ◽  
L.-C. Chang ◽  
M.-J. Tsai ◽  
Y.-F. Wang ◽  
F.-J. Chang

Abstract. Pumping stations play an important role in flood mitigation in metropolitan areas. The existing sewerage systems, however, are facing a great challenge of fast rising peak flow resulting from urbanization and climate change. It is imperative to construct an efficient and accurate operating prediction model for pumping stations to simulate the drainage mechanism for discharging the rainwater in advance. In this study, we propose two rule-based fuzzy neural networks, adaptive neuro-fuzzy inference system (ANFIS) and counterpropagation fuzzy neural network for on-line predicting of the number of open and closed pumps of a pivotal pumping station in Taipei city up to a lead time of 20 min. The performance of ANFIS outperforms that of CFNN in terms of model efficiency, accuracy, and correctness. Furthermore, the results not only show the predictive water levels do contribute to the successfully operating pumping stations but also demonstrate the applicability and reliability of ANFIS in automatically controlling the urban sewerage systems.


2010 ◽  
Vol 7 (5) ◽  
pp. 6725-6756 ◽  
Author(s):  
Y.-M. Chiang ◽  
L.-C. Chang ◽  
M.-J. Tsai ◽  
Y.-F. Wang ◽  
F.-J. Chang

Abstract. Pumping stations play an important role in flood mitigation in metropolitan areas. The existing sewerage systems, however, are facing a great challenge of fast rising peak flow resulting from urbanization and climate change. It is imperative to construct an efficient and accurate operating prediction model for pumping stations to simulate the drainage mechanism for discharging the rainwater in advance. In this study, we propose two rule-based fuzzy neural networks, adaptive neuro-fuzzy inference system (ANFIS) and counterpropagatiom fuzzy neural network (CFNN) for on-line predicting of the number of open and closed pumps of a pivotal pumping station in Taipei city up to a lead time of 20 min. The performance of ANFIS outperforms that of CFNN in terms of model efficiency, accuracy, and correctness. Furthermore, the results not only show the predictive water levels do contribute to the successfully operating pumping stations but also demonstrate the applicability and reliability of ANFIS in automatically controlling the urban sewerage systems.


2013 ◽  
Vol 58 (3) ◽  
pp. 871-875
Author(s):  
A. Herberg

Abstract This article outlines a methodology of modeling self-induced vibrations that occur in the course of machining of metal objects, i.e. when shaping casting patterns on CNC machining centers. The modeling process presented here is based on an algorithm that makes use of local model fuzzy-neural networks. The algorithm falls back on the advantages of fuzzy systems with Takagi-Sugeno-Kanga (TSK) consequences and neural networks with auxiliary modules that help optimize and shorten the time needed to identify the best possible network structure. The modeling of self-induced vibrations allows analyzing how the vibrations come into being. This in turn makes it possible to develop effective ways of eliminating these vibrations and, ultimately, designing a practical control system that would dispose of the vibrations altogether.


Sign in / Sign up

Export Citation Format

Share Document