Adaptive identification and control of continuous-time linear systems

2004 ◽  
Vol 37 (12) ◽  
pp. 573-578
Author(s):  
Dimitrios Karagiannis ◽  
Alessandro Astol
Robotica ◽  
2022 ◽  
pp. 1-16
Author(s):  
Jiashuo Wang ◽  
Shuo Pan ◽  
Zhiyu Xi

Abstract This paper addresses logarithmic quantizers with dynamic sensitivity design for continuous-time linear systems with a quantized feedback control law. The dynamics of state quantization and control quantization sensitivities during “zoom-in”/“zoom-out” stages are proposed. Dwell times of the dynamic sensitivities are co-designed. It is shown that with the proposed algorithm, a single-input continuous-time linear system can be stabilized by quantized feedback control via adopting sensitivity varying algorithm under certain assumptions. Also, the advantage of logarithmic quantization is sustained while achieving stability. Simulation results are provided to verify the theoretical analysis.


2014 ◽  
Vol 24 (3) ◽  
pp. 289-297
Author(s):  
Tadeusz Kaczorek

Abstract A new method is proposed of design of regular positive and asymptotically stable descriptor systems by the use of state-feedbacks for descriptor continuous-time linear systems with singular pencils. The method is based on the reduction of the descriptor system by elementary row and column operations to special form. A procedure for the design of the state-feedbacks gain matrix is presented and illustrated by a numerical example


Sign in / Sign up

Export Citation Format

Share Document