A Nonlinear Industrial Model Predictive Controller Using Integrated PLS and Neural Net State Space Model

1999 ◽  
Vol 32 (2) ◽  
pp. 6615-6620 ◽  
Author(s):  
H. Zhao ◽  
J. Guiver ◽  
R. Neelakantan ◽  
L.T. Biegler
Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 3 ◽  
Author(s):  
Eduardo Camacho ◽  
Antonio Gallego ◽  
Adolfo Sanchez ◽  
Manuel Berenguel

Model predictive control has been demonstrated to be one of the most efficient control techniques for solar power systems. An incremental offset-free state-space Model Predictive Controller (MPC) is developed for the Fresnel collector field located at the solar cooling plant installed on the roof of the Engineering School of Sevilla. A robust Luenberger observer is used for estimating the states of the plant which cannot be measured. The proposed strategy is tested on a nonlinear distributed parameter model of the Fresnel collector field. Its performance is compared to that obtained with a gain-scheduling generalized predictive controller. A real test carried out at the real plant is presented, showing that the proposed strategy achieves a very good performance.


2012 ◽  
Vol 246-247 ◽  
pp. 311-316
Author(s):  
Xiao Suo Luo

In order to deal with nonlinear, time-varying and disturbance-involved characteristics in the practical industrial processes, an indirect adaptive state-space MPC (model predictive control) method based on subspace identification is proposed. The state-space model, obtained through the POMOESP (Past Output MOESP, MOESP is one form of the subspace identification methods) algorithm, is regarded as the system model. Then, this model is used to design the model predictive controller that involves the solution of a quadratic programming problem to constraints. This controller is applied to the process control simulation on a 2-CSTR. Through comparisons of performance with a linear state-space MPC scheme, the superiority of the proposed control method is illustrated.


Author(s):  
Mahyar Akbari ◽  
Abdol Majid Khoshnood ◽  
Saied Irani

In this article, a novel approach for model-based sensor fault detection and estimation of gas turbine is presented. The proposed method includes driving a state-space model of gas turbine, designing a novel L1-norm Lyapunov-based observer, and a decision logic which is based on bank of observers. The novel observer is designed using multiple Lyapunov functions based on L1-norm, reducing the estimation noise while increasing the accuracy. The L1-norm observer is similar to sliding mode observer in switching time. The proposed observer also acts as a low-pass filter, subsequently reducing estimation chattering. Since a bank of observers is required in model-based sensor fault detection, a bank of L1-norm observers is designed in this article. Corresponding to the use of the bank of observers, a two-step fault detection decision logic is developed. Furthermore, the proposed state-space model is a hybrid data-driven model which is divided into two models for steady-state and transient conditions, according to the nature of the gas turbine. The model is developed by applying a subspace algorithm to the real field data of SGT-600 (an industrial gas turbine). The proposed model was validated by applying to two other similar gas turbines with different ambient and operational conditions. The results of the proposed approach implementation demonstrate precise gas turbine sensor fault detection and estimation.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ji Chol ◽  
Ri Jun Il

Abstract The modeling of counter-current leaching plant (CCLP) in Koryo Extract Production is presented in this paper. Koryo medicine is a natural physic to be used for a diet and the medical care. The counter-current leaching method is mainly used for producing Koryo medicine. The purpose of the modeling in the previous works is to indicate the concentration distributions, and not to describe the model for the process control. In literature, there are no nearly the papers for modeling CCLP and especially not the presence of papers that have described the issue for extracting the effective components from the Koryo medicinal materials. First, this paper presents that CCLP can be shown like the equivalent process consisting of two tanks, where there is a shaking apparatus, respectively. It allows leachate to flow between two tanks. Then, this paper presents the principle model for CCLP and the state space model on based it. The accuracy of the model has been verified from experiments made at CCLP in the Koryo Extract Production at the Gang Gyi Koryo Manufacture Factory.


Sign in / Sign up

Export Citation Format

Share Document