Robust Control Laws for Wheeled Mobile Robots

1996 ◽  
Vol 29 (1) ◽  
pp. 175-180
Author(s):  
Tarek Hamel ◽  
Dominique Meizel
2019 ◽  
Vol 9 (23) ◽  
pp. 5233 ◽  
Author(s):  
Jung ◽  
Bang

Thisstudy presents apassivity-based robust switching control for the posture stabilization of wheeled mobile robots (WMRs) with model uncertainty. Essentially, this proposed strategy is switching between (1) passivity-based robust control to lead the robot to the neighborhood of local minima with a finite time and (2) another robust control to perturb the w-rotational motion of the WMR before the v-kinetic energy of the WMR become meaningless, thereby, eventually converging to the desired posture. Thus, combining two switching control laws ensures the global convergence of (x,y)-navigation of WMRs from any initial position to desired set. Especially, the inter-switching time is intentionallyselected before the WMR completely loses its mobility, which ensures a strict decrease in (x,y)-navigation potential energy and a better global convergence rate. In addition, this control architecture also includes model uncertainty compensation, often neglected in practice, and analytical study of rotational perturbation was also conducted. The Lyapunov technique and energetic passivity wereutilized to derive this control law. Simulation results are presented to illustrate the effectiveness of the proposed technique. It wasfound from the results that the WMR wasquickly converged to the desired posture even under the presence of model uncertainty.


2016 ◽  
Vol 198 ◽  
pp. 74-79 ◽  
Author(s):  
Dawei Huang ◽  
Junyong Zhai ◽  
Weiqing Ai ◽  
Shumin Fei

2018 ◽  
Vol 10 (1) ◽  
pp. 168781401774525 ◽  
Author(s):  
Yung Yue Chen ◽  
Yung Hsiang Chen ◽  
Chiung Yau Huang

A trajectory tracking design for wheeled mobile robots is presented in this article. The design objective is to develop one nonlinear robust control law for the trajectory tracking problem of wheeled mobile robots in the presence of modeling uncertainties. The main contribution of this investigation is as follows. Under the effects of modeling uncertainties, an effective control design which can quickly converge tracking errors between the controlled wheeled mobile robot and the desired trajectory is derived mathematically. Generally, it is difficult to develop a nonlinear robust control design for the trajectory tracking problem of wheeled mobile robots due to the complexity and nonlinearity of the wheeled mobile robots’ dynamics. Fortunately, based on a series analysis for the tracking error dynamics of the controlled wheeled mobile robot, one promising solution is obtained. For verifying the trajectory tracking performance of this proposed method, two scenarios are utilized in the simulations and the practical tests.


2018 ◽  
Author(s):  
Rafael S. Del Lama ◽  
Raquel M. Candido ◽  
Luciana T. Raineri ◽  
Renato Tinós

The problem of controlling mobile robots in dynamic environments is an interesting challenge. This paper investigates the problem of controlling mobile robots in dynamic environments through robust control laws defined by echo state networks (ESN). The output weights of the ESN are optimized by genetic algorithms (GAs). Different GAs developed for optimization in dynamic environments are compared in the problem of searching for robust solutions. Two approaches are investigated: through dynamic evolutionary optimization and robust evolutionary optimization. In the experiments, the GA evolved in the static environment produces good trajectories in environments that resemble the static environment (without obstacles). However, it presents unsatisfactory performance in environments that are very different from the static environment. Both GAs evolved in the dynamic and robust optimization approaches present good results in environments that differ from the static environment.


2015 ◽  
Vol 29 (20) ◽  
pp. 1303-1313 ◽  
Author(s):  
Aliasghar Arab ◽  
Mohammad Mehdi Fateh

Sign in / Sign up

Export Citation Format

Share Document