echo state networks
Recently Published Documents


TOTAL DOCUMENTS

439
(FIVE YEARS 143)

H-INDEX

32
(FIVE YEARS 6)

2022 ◽  
Vol 108 ◽  
pp. 104596
Author(s):  
Bernardo B. Schwedersky ◽  
Rodolfo C.C. Flesch ◽  
Samuel B. Rovea
Keyword(s):  

2022 ◽  
Author(s):  
Junya Kato ◽  
Gouhei Tanaka ◽  
Ryosho Nakane ◽  
Akira Hirose

We propose reconstructive reservoir computing (RRC) for anomaly detection working for time-series signals. This paper investigates its fundamental properties with experiments employing echo state networks (ESNs). The RRC model is a reconstructor to replicate a normal input time-series signal with no delay or a certain delay (delay ≥ 0). In its anomaly detection process, we evaluate instantaneous reconstruction error defined as the difference between input and output signals at each time. Experiments with a sound dataset from industrial machines demonstrate that the error is low for normal signals while it becomes higher for abnormal ones, showing successful anomaly detection. It is notable that the RRC models’ behavior is very different from that of conventional anomaly detection models, that is, those based on forecasting (delay < 0). The error of the proposed reconstructor is explicitly lower than that of a forecaster, resulting in superior distinction between normal and abnormal states. We show that the RRC model is effective over a large range of reservoir parameters. We also illustrate the distribution of the output weights optimized through a training to discuss their roles in the reconstruction. Then, we investigate the influence of the neuronal leaking rate and the delay time shift amount on the transient response and the reconstruction error, showing high effectiveness of the reconstructor in anomaly detection. The proposed RRC will play a significant role for anomaly detection in the present and future sensor network society


2022 ◽  
Author(s):  
Junya Kato ◽  
Gouhei Tanaka ◽  
Ryosho Nakane ◽  
Akira Hirose

We propose reconstructive reservoir computing (RRC) for anomaly detection working for time-series signals. This paper investigates its fundamental properties with experiments employing echo state networks (ESNs). The RRC model is a reconstructor to replicate a normal input time-series signal with no delay or a certain delay (delay ≥ 0). In its anomaly detection process, we evaluate instantaneous reconstruction error defined as the difference between input and output signals at each time. Experiments with a sound dataset from industrial machines demonstrate that the error is low for normal signals while it becomes higher for abnormal ones, showing successful anomaly detection. It is notable that the RRC models’ behavior is very different from that of conventional anomaly detection models, that is, those based on forecasting (delay < 0). The error of the proposed reconstructor is explicitly lower than that of a forecaster, resulting in superior distinction between normal and abnormal states. We show that the RRC model is effective over a large range of reservoir parameters. We also illustrate the distribution of the output weights optimized through a training to discuss their roles in the reconstruction. Then, we investigate the influence of the neuronal leaking rate and the delay time shift amount on the transient response and the reconstruction error, showing high effectiveness of the reconstructor in anomaly detection. The proposed RRC will play a significant role for anomaly detection in the present and future sensor network society


Author(s):  
Bernardo Barancelli Schwedersky ◽  
Rodolfo César Costa Flesch ◽  
Hiago Antonio Sirino Dangui

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8096
Author(s):  
Paulo S. G. de Mattos Neto ◽  
João F. L. de Oliveira ◽  
Priscilla Bassetto ◽  
Hugo Valadares Siqueira ◽  
Luciano Barbosa ◽  
...  

The employment of smart meters for energy consumption monitoring is essential for planning and management of power generation systems. In this context, forecasting energy consumption is a valuable asset for decision making, since it can improve the predictability of forthcoming demand to energy providers. In this work, we propose a data-driven ensemble that combines five single well-known models in the forecasting literature: a statistical linear autoregressive model and four artificial neural networks: (radial basis function, multilayer perceptron, extreme learning machines, and echo state networks). The proposed ensemble employs extreme learning machines as the combination model due to its simplicity, learning speed, and greater ability of generalization in comparison to other artificial neural networks. The experiments were conducted on real consumption data collected from a smart meter in a one-step-ahead forecasting scenario. The results using five different performance metrics demonstrate that our solution outperforms other statistical, machine learning, and ensembles models proposed in the literature.


Author(s):  
Andrea Duggento ◽  
Maria Guerrisi ◽  
Nicola Toschi

While Granger causality (GC) has been often employed in network neuroscience, most GC applications are based on linear multivariate autoregressive (MVAR) models. However, real-life systems like biological networks exhibit notable nonlinear behaviour, hence undermining the validity of MVAR-based GC (MVAR-GC). Most nonlinear GC estimators only cater for additive nonlinearities or, alternatively, are based on recurrent neural networks or long short-term memory networks, which present considerable training difficulties and tailoring needs. We reformulate the GC framework in terms of echo-state networks-based models for arbitrarily complex networks, and characterize its ability to capture nonlinear causal relations in a network of noisy Duffing oscillators, showing a net advantage of echo state GC (ES-GC) in detecting nonlinear, causal links. We then explore the structure of ES-GC networks in the human brain employing functional MRI data from 1003 healthy subjects drawn from the human connectome project, demonstrating the existence of previously unknown directed within-brain interactions. In addition, we examine joint brain-heart signals in 15 subjects where we explore directed interaction between brain networks and central vagal cardiac control in order to investigate the so-called central autonomic network in a causal manner. This article is part of the theme issue ‘Advanced computation in cardiovascular physiology: new challenges and opportunities’.


Sign in / Sign up

Export Citation Format

Share Document