active disturbance rejection control
Recently Published Documents





2022 ◽  
Vol 70 (3) ◽  
pp. 5133-5142
Ibrahim M. Mehedi ◽  
Rachid Mansouri ◽  
Ubaid M. Al-Saggaf ◽  
Ahmed I. M. Iskanderani ◽  
Maamar Bettayeb ◽  

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Yang Cui ◽  
Cheng Liu ◽  
Yanming Cheng ◽  
Mahmoud Al Shurafa ◽  
Ilkyoo Lee ◽  

Because the harmonics in the production process of copper electrowinning have an important impact on the electrical energy consumption, it is necessary to suppress the harmonics effectively. In this paper, a copper electrowinning rectifier with double inverse star circuit is selected as a study object in which a large number of harmonics mainly including the 5th, 7th, 11th, and 13th harmonics are generated and injected back into the power grid. The total harmonic distortion rate of the power grid is up to 29.19% before filtering. Therefore, a method combining the induction filtering method and the active filtering method is proposed to carry out comprehensive filtering. Simulation results demonstrate that the total harmonic distortion rate of the system decreases to 4.20%, which indicates that the proposed method can track the corresponding changes of harmonics when the load changes in real time and filter them out. In order to ensure and improve the effect of active filter, a current harmonic tracking control method based on linear active disturbance rejection control is proposed. Simulation results show that the total harmonic distortion rate decreases to 3.34%, which is also lower than that of hysteresis control. Compared with the conventional single filtering method, the new filtering method combining induction filtering with active filtering based on linear active disturbance rejection control in the copper electrowinning rectifier has obvious advantages.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Bingyu Li ◽  
Jining Guo ◽  
Ying Fu

Induction heating systems are characterized by model uncertainty, nonlinearity, and external disturbances, and the control accuracy of the system directly affects the performance of the heated workpiece. In order to improve the temperature control accuracy and anti-interference performance of induction heating systems, this paper proposes a composite control strategy combining fractional-order PID (FOPID) and active disturbance rejection control (ADRC). Meanwhile, for the problem of too many controller tuning parameters, an improved quantum behavior particle swarm optimization (QPSO) algorithm is used to transform the nine parameters to be tuned in fractional-order PID active disturbance rejection control (FOPID-ADRC) into a minimization value optimization problem for solving. The simulation results show that the FOPID-ADRC controller improves the anti-interference capability and control accuracy of the temperature control system, and the improved QPSO algorithm has better global search capability and local optimal adaptation value.

Abstract This paper deals with the disturbance rejection, parameter uncertainty cancelation, and the closed-loop stabilization of the water level of the four-tank nonlinear system. For the four-tank system with relative degree one, a new structure of the active disturbance rejection control (ADRC) has been presented by incorporating a tracking differentiator (TD) in the control unit to obtain the derivate of the tracking error. Thus, the nonlinear-PD control together with the TD serves as a new nonlinear state error feedback. Moreover, a sliding mode extended state observer is presented in the feedback loop to estimate the system's state and the total disturbance. The proposed scheme has been compared with several control schemes including linear and nonlinear versions of ADRC techniques. Finally, the simulation results show that the proposed scheme achieves excellent results in terms of disturbance elimination and output tracking as compared to other conventional schemes. It was able to control the water levels in the two lower tanks to their desired value and exhibits excellent performance in terms of Integral Time Absolute Error (ITAE) and Objective Performance Index (OPI).

2021 ◽  
Vol 11 (24) ◽  
pp. 11583
Qi Zhang ◽  
Yaoxing Wei ◽  
Xiao Li

In this paper, Active Disturbance Rejection Control (ADRC) is utilized in the attitude control of a quadrotor aircraft to address the problem of attitude destabilization in flight control caused by parameter uncertainties and external disturbances. Considering the difficulty of optimizing the parameter of ADRC, a fractional-order fuzzy particle swarm optimization (FOFPSO) algorithm is proposed to optimize the parameters of ADRC for quadrotor aircraft. Simultaneously, the simulation experiment is designed, which compares with the optimized performance of traditional particle swarm optimization (PSO), fuzzy article swarm optimization (FPSO) and adaptive genetic algorithm-particle swarm optimization (AGA-PSO). In addition, the turbulent wind field model is established to verify the disturbance rejection performance of the controller. Finally, the designed controller is deployed to the actual hardware platform by using the model-based design method. The results show that the controller has a small overshoot and stronger disturbance rejection ability after the parameters are optimized by the proposed algorithm.

Sign in / Sign up

Export Citation Format

Share Document