Robust Decentralized State Feedback Control Design Using an Iterative Linear Matrix Inequality Algorithm

1996 ◽  
Vol 29 (1) ◽  
pp. 3597-3602 ◽  
Author(s):  
Jaw-Kuen Shiau ◽  
Joe H. Chow
2020 ◽  
Vol 10 (17) ◽  
pp. 5859
Author(s):  
Josep Rubió-Massegú ◽  
Francisco Palacios-Quiñonero ◽  
Josep M. Rossell ◽  
Hamid Reza Karimi

In vibration control of compound structures, inter-substructure damper (ISSD) systems exploit the out-of-phase response of different substructures to dissipate the kinetic vibrational energy by means of inter-substructure damping links. For seismic protection of multistory buildings, distributed sets of interstory fluid viscous dampers (FVDs) are ISSD systems of particular interest. The connections between distributed FVD systems and decentralized static output-feedback control allow using advanced controller-design methodologies to obtain passive ISSD systems with high-performance characteristics. A major issue of that approach is the computational difficulties associated to the numerical solution of optimization problems with structured bilinear matrix inequality constraints. In this work, we present a novel iterative linear matrix inequality procedure that can be applied to obtain enhanced suboptimal solutions for that kind of optimization problems. To demonstrate the effectiveness of the proposed methodology, we design a system of supplementary interstory FVDs for the seismic protection of a five-story building by synthesizing a decentralized static velocity-feedback H∞ controller. In the performance assessment, we compare the frequency-domain and time-domain responses of the designed FVD system with the behavior of the optimal static state-feedback H∞ controller. The obtained results indicate that the proposed approach allows designing passive ISSD systems that are capable to match the level of performance attained by optimal state-feedback active controllers.


2006 ◽  
Vol 128 (3) ◽  
pp. 617-625 ◽  
Author(s):  
Sing Kiong Nguang ◽  
Peng Shi

This paper investigates the H∞ output feedback control design for a class of uncertain nonlinear systems with Markovian jumps which can be described by Takagi-Sugeno models. Based on a linear matrix inequality (LMI), LMI-based sufficient conditions for the existence of a robust output feedback controller, such that the L2-gain from an exogenous input to a regulated output is less than or equal to a prescribed value, are derived. An illustrative example is used to demonstrate the effectiveness of the proposed design techniques.


2008 ◽  
Vol 78 (4) ◽  
pp. 514-531 ◽  
Author(s):  
Wudhichai Assawinchaichote ◽  
Sing Kiong Nguang ◽  
Peng Shi ◽  
El-Kébir Boukas

Sign in / Sign up

Export Citation Format

Share Document