fuzzy state
Recently Published Documents


TOTAL DOCUMENTS

212
(FIVE YEARS 47)

H-INDEX

19
(FIVE YEARS 3)

2021 ◽  
pp. 107754632110429
Author(s):  
Pouriya Pourgholam ◽  
Hamid Moeenfard

Accurate modeling and efficient control of inverted pendulums have always been a challenge for researchers. So, the current research aims to achieve the following objectives: (I) proposing a comprehensive dynamic model for the inverted pendulums which accounts for the flexibility of the pendulum bar and (II) suggesting an appropriate supervisory fuzzy-pole placement control strategy for stabilizing the pendulum system. Using a Lagrangian formulation, the equations of motion are derived and linearized. Then, a state feedback controller with a reduced-order observer is designed to stabilize the system. Closed-loop simulations reveal that at least six modes shall be considered in the dynamic equations. To improve the quality of the transient response, a novel fuzzy system is developed for real-time assignment of the controller poles. Simulation results demonstrate that the control quality is significantly improved by adding a supervisory fuzzy system to the control loop. The developed approach for dynamic modeling of the system, and the idea of multi-level fuzzy-pole placement control architecture developed in this paper, may be successfully applied to improve the response specifications in other dynamic systems.


Author(s):  
Sh. M. Jafarova

Objective. The purpose of the study is to find methods for solving the problem of ensuring a reliable level of security for cloud services. Production models can be considered the most common models that provide simplicity of knowledge representation and inference organization.Method. The research is based on the application of methods of fuzzy logic and mathematical modeling.Result. It is proposed to use fuzzy models that provide a flexible strategy for processing heterogeneous dynamic interacting processes that represent data and knowledge in an essentially fuzzy state space of objects of analysis.Conclusion. A production model of information security management is proposed, which is used to create data processing and storage centers. The production system includes a rule base, a global database, and a rule interpreter. The effective use of large information resources operating in an uncertain environment on the basis of a production model makes it possible to model and ensure information security of systems.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7369
Author(s):  
Li Yang ◽  
Fuzhao Yang ◽  
Weitao Sheng ◽  
Kun Zhou ◽  
Tianmin Huang

To research the chaotic motion problem of the direct-drive permanent magnet synchronous generator (D-PMSG) for a wind turbine with uncertain parameters and fractional order characteristics, a control strategy established upon fuzzy state feedback is proposed. Firstly, according to the working mechanism of D-PMSG, the Lorenz nonlinear mathematical model is established by affine transformation and time transformation. Secondly, fractional order nonlinear systems (FONSs) are transformed into linear sub-model by Takagi–Sugeno (T-S) fuzzy model. Then, the fuzzy state feedback controller is designed through Parallel Distributed Compensation (PDC) control principle to suppress the chaotic motion. By applying the fractional Lyapunov stability theory (FLST), the sufficient conditions for Mittag–Leffler stability are formulated in the format of linear matrix inequalities (LMIs). Finally, the control performance and effectiveness of the proposed controller are demonstrated through numerical simulations, and the chaotic motions in D-PMSG can be eliminated quickly.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Dezhi Liu ◽  
Min Zhu ◽  
Jia Liu

AbstractDifferent from the other work, the almost sure asymptotic stability of an uncertain stochastic T–S fuzzy system driven by Lévy noise has been investigated. However, the Lévy noise caused the càdlàg paths in the system, and the uncertainty was the linear fractional form, which made difference to the general norm-bounded type. Using the special stochastic techniques and new matrix decomposition method, we deal with the càdlàg paths and uncertainty of the system. As the main results, the sufficient conditions of almost sure asymptotic stability for stochastic T–S fuzzy system driven by Lévy noise have been presented. On this basis, the closed-loop system is robustly almost surely asymptotically stable with fuzzy state-feedback controller. Furthermore, our stabilization criteria are based on linear matrix inequalities (LMIs), whence the feedback controller could be designed more easily in practice.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Li Yang ◽  
Zijie Shen ◽  
Weitao Sheng ◽  
Tianmin Huang

The stability analysis and controller design problems for the fractional-order (FO) direct-drive permanent magnet synchronous generator (FOD-PMSG) wind turbine with parameter uncertainties and external disturbance are addressed. Takagi–Sugeno (T-S) model is used to approximate nonlinearities, and the parallel distributed compensation (PDC) technique is employed to construct the fuzzy state feedback controller. In order to suppress the external disturbance more effectively, the global Mittag-Leffler stability definition satisfying the H∞ performance index is proposed for the first time. Using the FO Lyapunov direct method, applying the Cauchy matrix inequality (CMI), and combining with the Schur complement lemma, the sufficient conditions of Mittag-Leffler stability meeting the H∞ performance index are given in the form of linear matrix inequalities (LMIs). Simulation results clearly show that the proposed control scheme can make the system get rid of the chaotic state quickly and have strong robustness under parameter uncertainties and external disturbance varying randomly.


2021 ◽  
Vol 9 (8) ◽  
pp. 828
Author(s):  
Liyan Zhu ◽  
Tieshan Li

Traffic engineering control is a major challenge in marine transportation. Cost efficiency and high performance demand advanced technologies for the ship control systems. This paper develops an autopilot heading control scheme based on a fuzzy state observer for an intelligent ship on this subject to track the prescribed function while calling for performance limitation and order execution time. A fuzzy logic system (FLS) is adopted to approximate the unknown uncertainties caused by the changes in water depth, wind, wave, ship loading, and speed in navigation. State observer is required to obtain unknown yaw rate. By adopting performance function and tracking error transformation techniques, the heading tracking error can converge to prescribed performance bounds. Taking settling time into account, the finite-time adaptive prescribed performance control algorithm can save more resources effectively. Based on the Lyapunov stability theory, the observer-based adaptive fuzzy control approach does not cause any unbounded signal, the system remains stable. Meanwhile, the autopilot heading control system with an unknown yaw rate and constraint state can benefit from the given design.


2021 ◽  
Author(s):  
Nian Zhang ◽  
Qin Zhou ◽  
Guiwu Wei

Abstract In order to comprehensively and actually describe the evaluation process, the dual hesitant fuzzy linguistic (DHFL) set is introduced in this paper, which includes more decision-making information, such as fuzzy state, hesitant process and language information. Specifically, some basic concepts of DHFL set are illustrated and a new distance measure for DHFL information is proposed, which is suitable for overcoming the irrational traditional methodology upon the general distance measure and basic probability concepts. Then, technique for order preference by similarity to ideal solution (TOPSIS) method is extended in dual hesitant fuzzy language environment, a novel TOPSIS method using the DHFL set is presented. Finally, the sensitivity analysis is performed to verify the feasibility and stability of the developed method, then the advantages of the proposed method are also confirmed by detailed comparative analysis.


2021 ◽  
Vol 4 ◽  
pp. 117-124
Author(s):  
Alexander Tkachenko ◽  

An in-flight geometric calibration (further — calibration) is interpreted here as a procedure of making more preceise mutual attitude parameters of the onboard imaging camera and the star tracker. The problem of calibration is solved with using of observations of the landmarks from the orbit. In this work, the landmarks are considered as unknown in the sense that they may be identified on the several snapshots, they may be associated with synchronous data of the star tracker and GPS, but their location in the Earth coordinate frame is unknown. While unknown markers are used, it is more complicated to provide high accuracy of calibration than when geo-referenced markers are observed. In such a situation, improvement of the onboard devices and gauges and increasing of their accuracy strenghtens advisability of agreement of attainable accuracy of calculations while in-flight geometric calibration with accessible measurings accuracy. It concerns properly calibration so as geo-referencing of space snaps using results of calibration. In particular, it is important to consider how accuracy of calibration depends on the accuracy of specific measurings and initial data. Actuality of the considered problem is indisputable. Without its solution, attraction of high-accurate measurings is senseless. A main means of investigation is computer simulanion and analysis of its results. The combined algorithm is proposed for the processing of the calibration measuring equations. It consists of two independent parts. The first one belongs to author of this work and is based on photogrammetric condition of collinearity The second part belongs to D.V. Lebedev and is based on photogrammetric condition of coplanarity. The method of state estimation with high convergence characteristics — fuzzy state observer — is used for resolving of measuring equations. The results of above-mentioned calibration are fully fit for the geo-referencing of the unknown ground objects with acceptable accuracy. Computer simulation had demonsrated good accuracy of the proposed method of the in-flight geometric calibration using unknown landmarks in a combination with high-precise characteristics of used technical means. The simulation had shown the calibration accuracy on the level of 5 arc sec and accuracy of the geo-referencing on the level of 10–20 m. It is fully comparable with accuracy when geo-referenced markers are observated.


Sign in / Sign up

Export Citation Format

Share Document