A New Approach to the Determination of Transient Stability of Large Power Systems

1979 ◽  
Vol 12 (5) ◽  
pp. 182-186
Author(s):  
B.N. Nityanandan ◽  
K. Nagappan
Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6893
Author(s):  
A. F. Diaz-Alzate ◽  
John E. Candelo-Becerra ◽  
Albert Deluque-Pinto

Real-time transient stability studies are based on voltage angle measures obtained with phasor measurement units (PMUs). A more precise calculation to address transient stability is obtained when using the rotor angles. However, these values are commonly estimated, which leads to possible errors. In this work, the kinetic energy changes in electric machines are used as a criterion for evaluating and correcting transient stability, and to determine the precise time of insertion of a special protection system (SPS). Data from the PMU of the wide-area measurement system (WAMS) are used to construct the SPS. Furthermore, it is assumed that a microcontroller can be located in each generation unit to obtain the synchronized angular velocity. Based on these measurements, the kinetic energy of the system and the respective control action are performed at the appropriate time. The results show that the proposed SPS effectively corrects the oscillations fast enough during the transient stability event. In addition, the proposed method has the advantage that it does not depend on commonly proposed methods, such as system models, the identification of coherent machine groups, or the structure of the network. Moreover, the synchronized angular velocity signal is used, which is not commonly measured in power systems. Validation of the method is carried out in the New England power system, and the findings show that the method is helpful for real-time operation on large power systems.


Author(s):  
Elmotaz Billa Elghali ◽  
Marayati Marsadek ◽  
Agileswari K. Ramasamy

This paper presents a new approach to determine the risk of transient stability. It describes the implementation of rotor trajectory index (RTI) to assess the severity of power systems when it is subjected to a three-phase fault. The (RTI) is proposed as an index used to represent severity of transient instability. Risk of transient stability for three-phase fault is calculated using a well-known risk formula. Risk of transient stability provides a quantitative measure to evaluate the potential loss of synchronism of a generator that takes into account the probability and consequences. RTI index is calculated based on the machines rotor angles obtained at each step of a time domain simulation. RTI is proposed as an index to show the severity of the three-phase fault towards transient stability since it allows a fast and accurate measurement of the degree of stability of the system facing a fault. The proposed technique is implemented on the IEEE 39-bus system.


2020 ◽  
pp. 46-51
Author(s):  
V. V. Barskov ◽  
◽  
A. V. Bubnov ◽  
A. N. Kirichenko ◽  
◽  
...  

Timeliness of the topic is conditioned by the need to keep up ample of static and transient stability margins in modern electrical power systems. The article object is to give a determination of present methods of evaluating damping of systems with synchronous machines, in the context of their effectiveness. And also to estimate the effectiveness of these methods in the performance of the task concerned with selecting best settings of automatic excitation regulators of synchronous generators. This analysis led us to the conclusions, in particular, about possibility to apply the root locus methods in estimating stability of electrical power systems, and also about genericity of the matrix method with the use of QR-algorithm, which is widely used in practice of calculating stability


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2181
Author(s):  
Haris E. Psillakis ◽  
Antonio T. Alexandridis

In this paper, we present a nonlinear coordinated excitation and static var compensator (SVC) control for regulating the output voltage and improving the transient stability of a synchronous generator infinite bus (SGIB) power system. In the first stage, advanced nonlinear methods are applied to regulate the SVC susceptance in a manner that can potentially improve the overall transient performance and stability. However, as distant from the generator measurements are needed, time delays are expected in the control loop. This fact substantially complicates the whole design. Therefore, a novel design is proposed that uses backstepping methodologies and feedback linearization techniques suitably modified to take into account the delayed measurement feedback laws in order to implement both the excitation voltage and the SVC compensator input. A detailed and rigorous Lyapunov stability analysis reveals that if the time delays do not exceed some specific limits, then all closed-loop signals remain bounded and the frequency deviations are effectively regulated to approach zero. Applying this control scheme, output voltage changes occur after the large power angle deviations have been eliminated. The scheme is thus completed, in a second stage, by a soft-switching mechanism employed on a classical proportional integral (PI) PI voltage controller acting on the excitation loop when the frequency deviations tend to zero in order to smoothly recover the output voltage level at its nominal value. Detailed simulation studies verify the effectiveness of the proposed design approach.


Sign in / Sign up

Export Citation Format

Share Document