scholarly journals 63. Highly Efficient Gene Transfer to Hematopoietic Stem Cells and Long-Term Transgene Expression in the Blood by Direct Intramarrow Administration of SV40-Derived Vectors

2008 ◽  
Vol 16 ◽  
pp. S25
Blood ◽  
2005 ◽  
Vol 106 (10) ◽  
pp. 3386-3395 ◽  
Author(s):  
Els Verhoeyen ◽  
Maciej Wiznerowicz ◽  
Delphine Olivier ◽  
Brigitte Izac ◽  
Didier Trono ◽  
...  

AbstractA major limitation of current lentiviral vectors (LVs) is their inability to govern efficient gene transfer into quiescent cells, such as human CD34+ cells, that reside in the G0 phase of the cell cycle and that are highly enriched in hematopoietic stem cells. This hampers their application for gene therapy of hematopoietic cells. Here, we designed novel LVs that overcome this restriction by displaying “early-acting cytokines” on their surface. Display of thrombopoietin, stem cell factor, or both cytokines on the LV surface allowed efficient gene delivery into quiescent cord blood CD34+ cells. Moreover, these surface-engineered LVs preferentially transduced and promoted survival of resting CD34+ cells rather than cycling cells. Finally, and most importantly, these novel LVs allowed superior gene transfer in the most immature CD34+ cells as compared to conventional LVs, even when the latter vectors were used to transduce cells in the presence of recombinant cytokines. This was demonstrated by their capacity to promote selective transduction of CD34+ cell in in vitro derived long-term culture-initiating cell (LTC-IC) colonies and of long-term NOD/SCID repopulating cells (SRCs) in vivo.


Gene Therapy ◽  
2003 ◽  
Vol 10 (3) ◽  
pp. 272-277 ◽  
Author(s):  
C H Jin ◽  
K Kusuhara ◽  
Y Yonemitsu ◽  
A Nomura ◽  
S Okano ◽  
...  

1994 ◽  
Vol 91 (1) ◽  
pp. 350-354 ◽  
Author(s):  
D. Bienzle ◽  
A. C. Abrams-Ogg ◽  
S. A. Kruth ◽  
J. Ackland-Snow ◽  
R. F. Carter ◽  
...  

1990 ◽  
Vol 1 (3) ◽  
pp. 277-287 ◽  
Author(s):  
Pamela H. Correll ◽  
Yvonne Kew ◽  
Leland K. Perry ◽  
Roscoe O. Brady ◽  
John K. Fink ◽  
...  

Anemia ◽  
2010 ◽  
Vol 2010 ◽  
pp. 1-13 ◽  
Author(s):  
Ouassila Habi ◽  
Johanne Girard ◽  
Valérie Bourdages ◽  
Marie-Chantal Delisle ◽  
Madeleine Carreau

The main cause of morbidity and mortality in Fanconi anemia patients is the development of bone marrow (BM) failure; thus correction of hematopoietic stem cells (HSCs) through gene transfer approaches would benefit FA patients. However, gene therapy trials for FA patients using ex vivo transduction protocols have failed to provide long-term correction. In addition, ex vivo cultures have been found to be hazardous for FA cells. To circumvent negative effects of ex vivo culture in FA stem cells, we tested the corrective ability of direct injection of recombinant lentiviral particles encoding FancC-EGFP into femurs ofFancC−/−mice. Using this approach, we show thatFancC−/−HSCs were efficiently corrected. Intrafemoral gene transfer of theFancCgene prevented the mitomycin C-induced BM failure. Moreover, we show that intrafemoral gene delivery into aplastic marrow restored the bone marrow cellularity and corrected the remaining HSCs. These results provide evidence that targeting FA-deficient HSCs directly in their environment enables efficient and long-term correction of BM defects in FA.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2107-2107
Author(s):  
E.L.S. Verhoeyen ◽  
Maciej Wiznerowicz ◽  
Delphine Olivier ◽  
Brigitte Izac ◽  
Didier Trono ◽  
...  

Abstract A major limitation of current generation lentiviral vectors (LVs) is their inability to govern efficient gene transfer into quiescent target cells which hampers their application for hematopoietic stem cell gene therapy. Human CD34+ cells that reside into G0 phase of the cell cycle and thus are quiescent, are indeed higly enriched in hematopoietic stem cells. Here, we designed novel lentiviral vectors that overcome this type of restriction by displaying early-acting-cytokines on their surface. Presentation of a single cytokine, thrombopoietin (TPO), or co-presentation of TPO and stem cell factor (SCF) on the lentiviral vector surface improved gene transfer into quiescent CD34+ cord blood cells by 45-fold and 77-fold, respectively, as compared to conventional lentiviral vectors. Moreover, these new LVs preferentially transduced and promoted the survival of immature resting cells rather than cycling CD34+ cells. Most importantly, the new early-cytokine-displaying lentiviral vectors allowed highly efficient gene transfer in CD34+ immature cells with long-term in vivo NOD/SCID mice repopulating capacity, a hallmark of bona fide HSCs. In conclusion, the novel ‘early-acting cytokines’ displaying LVs described here provide simplified, reproducible gene transfer protocols that ensure efficient gene transfer in hematopoietic stem cells. As such, these novel reagents bring us one step closer to selective in vivo gene therapy.


Sign in / Sign up

Export Citation Format

Share Document