scholarly journals Centrosome Maturation and Mitotic Spindle Assembly in C. elegans Require SPD-5, a Protein with Multiple Coiled-Coil Domains

2002 ◽  
Vol 3 (5) ◽  
pp. 673-684 ◽  
Author(s):  
Danielle R. Hamill ◽  
Aaron F. Severson ◽  
J.Clayton Carter ◽  
Bruce Bowerman
2013 ◽  
Vol 202 (3) ◽  
pp. 463-478 ◽  
Author(s):  
Fiona E. Hood ◽  
Samantha J. Williams ◽  
Selena G. Burgess ◽  
Mark W. Richards ◽  
Daniel Roth ◽  
...  

Acomplex of transforming acidic coiled-coil protein 3 (TACC3), colonic and hepatic tumor overexpressed gene (ch-TOG), and clathrin has been implicated in mitotic spindle assembly and in the stabilization of kinetochore fibers by cross-linking microtubules. It is unclear how this complex binds microtubules and how the proteins in the complex interact with one another. TACC3 and clathrin have each been proposed to be the spindle recruitment factor. We have mapped the interactions within the complex and show that TACC3 and clathrin were interdependent for spindle recruitment, having to interact in order for either to be recruited to the spindle. The N-terminal domain of clathrin and the TACC domain of TACC3 in tandem made a microtubule interaction surface, coordinated by TACC3–clathrin binding. A dileucine motif and Aurora A–phosphorylated serine 558 on TACC3 bound to the “ankle” of clathrin. The other interaction within the complex involved a stutter in the TACC3 coiled-coil and a proposed novel sixth TOG domain in ch-TOG, which was required for microtubule localization of ch-TOG but not TACC3–clathrin.


Cell ◽  
2007 ◽  
Vol 128 (1) ◽  
pp. 115-127 ◽  
Author(s):  
Anne-Lore Schlaitz ◽  
Martin Srayko ◽  
Alexander Dammermann ◽  
Sophie Quintin ◽  
Natalie Wielsch ◽  
...  

2005 ◽  
Vol 16 (6) ◽  
pp. 2836-2847 ◽  
Author(s):  
Lori L. O'Brien ◽  
Alison J. Albee ◽  
Lingling Liu ◽  
Wei Tao ◽  
Pawel Dobrzyn ◽  
...  

Maskin is the Xenopus homolog of the transforming acidic coiled coil (TACC)-family of microtubule and centrosome-interacting proteins. Members of this family share a ∼200 amino acid coiled coil motif at their C-termini, but have only limited homology outside of this domain. In all species examined thus far, perturbations of TACC proteins lead to disruptions of cell cycle progression and/or embryonic lethality. In Drosophila, Caenorhabditis elegans, and humans, these disruptions have been attributed to mitotic spindle assembly defects, and the TACC proteins in these organisms are thought to function as structural components of the spindle. In contrast, cell division failure in early Xenopus embryo blastomeres has been attributed to a role of maskin in regulating the translation of, among others, cyclin B1 mRNA. In this study, we show that maskin, like other TACC proteins, plays a direct role in mitotic spindle assembly in Xenopus egg extracts and that this role is independent of cyclin B. Maskin immunodepletion and add-back experiments demonstrate that maskin, or a maskin-associated activity, is required for two distinct steps during spindle assembly in Xenopus egg extracts that can be distinguished by their response to “rescue” experiments. Defects in the “early” step, manifested by greatly reduced aster size during early time points in maskin-depleted extracts, can be rescued by readdition of purified full-length maskin. Moreover, defects in this step can also be rescued by addition of only the TACC-domain of maskin. In contrast, defects in the “late” step during spindle assembly, manifested by abnormal spindles at later time points, cannot be rescued by readdition of maskin. We show that maskin interacts with a number of proteins in egg extracts, including XMAP215, a known modulator of microtubule dynamics, and CPEB, a protein that is involved in translational regulation of important cell cycle regulators. Maskin depletion from egg extracts results in compromised microtubule asters and spindles and the mislocalization of XMAP215, but CPEB localization is unaffected. Together, these data suggest that in addition to its previously reported role as a translational regulator, maskin is also important for mitotic spindle assembly.


2012 ◽  
Vol 23 (9) ◽  
pp. 1688-1699 ◽  
Author(s):  
Hanako Hayashi ◽  
Kenji Kimura ◽  
Akatsuki Kimura

The assembly of microtubules inside the cell is controlled both spatially and temporally. During mitosis, microtubule assembly must be activated locally at the nascent spindle region for mitotic spindle assembly to occur efficiently. In this paper, we report that mitotic spindle components, such as free tubulin subunits, accumulated in the nascent spindle region, independent of spindle formation in the Caenorhabditis elegans embryo. This accumulation coincided with nuclear envelope permeabilization, suggesting that permeabilization might trigger the accumulation. When permeabilization was induced earlier by knockdown of lamin, tubulin also accumulated earlier. The boundaries of the region of accumulation coincided with the remnant nuclear envelope, which remains after nuclear envelope breakdown in cells that undergo semi-open mitosis, such as those of C. elegans. Ran, a small GTPase protein, was required for tubulin accumulation. Fluorescence recovery after photobleaching analysis revealed that the accumulation was accompanied by an increase in the immobile fraction of free tubulin inside the remnant nuclear envelope. We propose that this newly identified mechanism of accumulation of free tubulin—and probably of other molecules—at the nascent spindle region contributes to efficient assembly of the mitotic spindle in the C. elegans embryo.


2016 ◽  
Vol 3 (3) ◽  
pp. e1062952 ◽  
Author(s):  
Suzanna L. Prosser ◽  
Laura O'Regan ◽  
Andrew M. Fry

Sign in / Sign up

Export Citation Format

Share Document