fluorescence recovery after photobleaching
Recently Published Documents


TOTAL DOCUMENTS

417
(FIVE YEARS 68)

H-INDEX

57
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Ivar Noordstra ◽  
Cyntha M. van den Berg ◽  
Fransje W. J. Boot ◽  
Eugene A. Katrukha ◽  
Ka Lou Yu ◽  
...  

Insulin secretion in pancreatic β-cells is regulated by cortical complexes that are enriched at the sites of adhesion to extracellular matrix facing the vasculature. Many components of these complexes, including Bassoon, RIM, ELKS and liprins, are shared with neuronal synapses. Here, we show that insulin secretion sites also contain non-neuronal proteins LL5β and KANK1, which in migrating cells organize exocytotic machinery in the vicinity of integrin-based adhesions. Depletion of LL5β or focal adhesion disassembly triggered by myosin II inhibition perturbed the clustering of secretory complexes and attenuated the first wave of insulin release. While previous analyses in vitro and in neurons suggested that secretory machinery might assemble through liquid-liquid phase separation, analysis of endogenously labeled ELKS in pancreatic islets indicated that its dynamics is inconsistent with such a scenario. Instead, fluorescence recovery after photobleaching and single molecule imaging showed that ELKS turnover is driven by binding and unbinding to low-mobility scaffolds. Both the scaffold movements and ELKS exchange were stimulated by glucose treatment. Our findings help to explain how integrin-based adhesions control spatial organization of glucose-stimulated insulin release.


Author(s):  
Reito Watanabe ◽  
Yasuhiro Hirano ◽  
Masatoshi Hara ◽  
Yasushi Hiraoka ◽  
Tatsuo Fukagawa

AbstractThe kinetochore is essential for faithful chromosome segregation during mitosis and is assembled through dynamic processes involving numerous kinetochore proteins. Various experimental strategies have been used to understand kinetochore assembly processes. Fluorescence recovery after photobleaching (FRAP) analysis is also a useful strategy for revealing the dynamics of kinetochore assembly. In this study, we introduced fluorescence protein-tagged kinetochore protein cDNAs into each endogenous locus and performed FRAP analyses in chicken DT40 cells. Centromeric protein (CENP)-C was highly mobile in interphase, but immobile during mitosis. CENP-C mutants lacking the CENP-A-binding domain became mobile during mitosis. In contrast to CENP-C, CENP-T and CENP-H were immobile during both interphase and mitosis. The mobility of Dsn1, which is a component of the Mis12 complex and directly binds to CENP-C, depended on CENP-C mobility during mitosis. Thus, our FRAP assays provide dynamic aspects of how the kinetochore is assembled.


2022 ◽  
Author(s):  
Gabriel Cavin-Meza ◽  
Timothy J. Mullen ◽  
Ian D. Wolff ◽  
Emily R. Czajkowski ◽  
Nikita Santosh Divekar ◽  
...  

During mitosis, centrosomes serve as microtubule organizing centers that guide the formation of a bipolar spindle. However, oocytes of many species lack centrosomes; how meiotic spindles establish and maintain these acentrosomal poles remains poorly understood. Here, we show that the microtubule polymerase ZYG-9ch-TOG is required to maintain acentrosomal pole integrity in C. elegans oocyte meiosis; following acute depletion of ZYG-9 from pre-formed spindles, the poles split apart and an unstable multipolar structure forms. Depletion of TAC-1, a protein known to interact with ZYG-9 in mitosis, caused loss of proper ZYG-9 localization and similar spindle phenotypes, further demonstrating that ZYG-9 is required for pole integrity. However, depletion of ZYG-9 surprisingly did not affect the assembly or stability of monopolar spindles, suggesting that ZYG-9 is not required for acentrosomal pole structure per se. Moreover, fluorescence recovery after photobleaching (FRAP) revealed that ZYG-9 turns over rapidly at acentrosomal poles, displaying similar turnover dynamics to tubulin itself, suggesting that ZYG-9 does not play a static structural role at poles. Together, these data support a global role for ZYG-9 in regulating the stability of bipolar spindles and demonstrate that the maintenance of acentrosomal poles requires factors beyond those acting to organize the pole structure itself.


2021 ◽  
Author(s):  
Laura Breimann ◽  
Ana Karina Morao ◽  
Jun Kim ◽  
David Sebastian Jimenez ◽  
Nina Maryn ◽  
...  

Condensin is a multi-subunit SMC complex that binds to and compacts chromosomes. Here we addressed the regulation of condensin binding dynamics using C. elegans condensin DC, which represses X chromosomes in hermaphrodites for dosage compensation. We established fluorescence recovery after photobleaching (FRAP) using the SMC4 homolog DPY-27 and showed that a well-characterized ATPase mutation abolishes its binding. Next, we performed FRAP in the background of several chromatin modifier mutants that cause varying degrees of X-chromosome derepression. The greatest effect was in a null mutant of the H4K20me2 demethylase DPY-21, where the mobile fraction of condensin DC reduced from ∼30% to 10%. In contrast, a catalytic mutant of dpy-21 did not regulate condensin DC mobility. Hi-C data in the dpy-21 null mutant showed little change compared to wild type, uncoupling Hi-C measured long-range DNA contacts from transcriptional repression of the X chromosomes. Together, our results indicate that DPY-21 has a non-catalytic role in regulating the dynamics of condensin DC binding, which is important for transcription repression.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260401
Author(s):  
Yueh-Fu O. Wu ◽  
Annamarie T. Bryant ◽  
Nora T. Nelson ◽  
Alexander G. Madey ◽  
Gail F. Fernandes ◽  
...  

Proper regulation of microtubule (MT) dynamics is critical for cellular processes including cell division and intracellular transport. Plus-end tracking proteins (+TIPs) dynamically track growing MTs and play a key role in MT regulation. +TIPs participate in a complex web of intra- and inter- molecular interactions known as the +TIP network. Hypotheses addressing the purpose of +TIP:+TIP interactions include relieving +TIP autoinhibition and localizing MT regulators to growing MT ends. In addition, we have proposed that the web of +TIP:+TIP interactions has a physical purpose: creating a dynamic scaffold that constrains the structural fluctuations of the fragile MT tip and thus acts as a polymerization chaperone. Here we examine the possibility that this proposed scaffold is a biomolecular condensate (i.e., liquid droplet). Many animal +TIP network proteins are multivalent and have intrinsically disordered regions, features commonly found in biomolecular condensates. Moreover, previous studies have shown that overexpression of the +TIP CLIP-170 induces large “patch” structures containing CLIP-170 and other +TIPs; we hypothesized that these structures might be biomolecular condensates. To test this hypothesis, we used video microscopy, immunofluorescence staining, and Fluorescence Recovery After Photobleaching (FRAP). Our data show that the CLIP-170-induced patches have hallmarks indicative of a biomolecular condensate, one that contains +TIP proteins and excludes other known condensate markers. Moreover, bioinformatic studies demonstrate that the presence of intrinsically disordered regions is conserved in key +TIPs, implying that these regions are functionally significant. Together, these results indicate that the CLIP-170 induced patches in cells are phase-separated liquid condensates and raise the possibility that the endogenous +TIP network might form a liquid droplet at MT ends or other +TIP locations.


Author(s):  
Adriana M. Fresquez ◽  
Carl White

The gaseous signaling molecule hydrogen sulfide (H2S) physiologically regulates store-operated Ca2+ entry (SOCE). The SOCE machinery consists of the plasma membrane-localized Orai channels (Orai1-3) and endoplasmic reticulum-localized STIM1 and STIM2 proteins. H2S inhibits Orai3- but not Orai1- or Orai2-mediated SOCE. The current objective was to define the mechanism by which H2S selectively modifies Orai3. We measured SOCE and STIM1/Orai3 dynamics and interactions in HEK293 cells exogenously expressing fluorescently-tagged human STIM1 and Orai3 in the presence and absence of the H2S donor GYY4137. Two cysteines (C226 and C232) are present in Orai3 that are absent in the Orai1 and Orai2. When we mutated either of these cysteines to serine, alone or in combination, SOCE inhibition by H2S was abolished. We also established that inhibition was dependent on an interaction with STIM1. To further define the effects of H2S on STIM1/Orai3 interaction we performed a series of fluorescence recovery after photobleaching (FRAP), colocalization, and fluorescence resonance energy transfer (FRET) experiments. Treatment with H2S did not affect the mobility of Orai3 in the membrane, nor did it influence STIM1/Orai3 puncta formation or STIM1-Orai3 protein-protein interactions. These data support a model in which H2S modification of Orai3 at cysteines 226 and 232 limits SOCE evoked upon store depletion and STIM1 engagement, by a mechanism independent of the interaction between Orai3 and STIM1.


2021 ◽  
Author(s):  
Masatoshi Ooga ◽  
Rei Inoue ◽  
Sayaka Wakayama ◽  
Satoshi Kamimura ◽  
Teruhiko Wakayama

Abstract Parental pronuclei (PN) are asymmetrical in several points but the underlying mechanism for this is still unclear. Recently, a theory has been become broadly accepted that sperm are more than mere vehicles to carry the paternal haploid genome into oocytes. Here, in order to reveal the formation mechanisms for parental asymmetrically relaxed chromatin structure in zygotes, we investigated histone mobility in parthenogenetic-, androgenic-, ROSI-, ELSI-, tICSI-, and ICSI-zygotes with several numbers of PNs with the use of zygotic fluorescence recovery after photobleaching, a method previous established by our group. The results showed that sperm played a role to cause chromatin compaction in both parental PNs. Interestingly, during spermiogenesis, male germ cells acquired this ability and its resistance. On the other hand, oocytes harbored chromatin relaxation ability. Furthermore, the chromatin relaxation factor was competed for between PNs. Thus, these results indicated that the parental asymmetrically relaxed chromatin structure was established as a result of a competition between the PNs for the chromatin relaxation factor that opposed the chromatin compaction effect by sperm. Together, it was suggested that parental germ cells cooperated for their just arisen newborn zygotes by playing a distinct role in the regulation of chromatin structure.


2021 ◽  
Author(s):  
Ivar Noordstra ◽  
Cyntha M. van den Berg ◽  
Fransje W. J. Boot ◽  
Eugene K Katrukha ◽  
Ka Lou Yu ◽  
...  

Insulin secretion in pancreatic β-cells is regulated by cortical complexes that are enriched at the sites of adhesion to extracellular matrix facing the vasculature. Many components of these complexes, including Bassoon, RIM, ELKS and liprins, are shared with neuronal synapses. Here, we show that insulin secretion sites also contain non-neuronal proteins LL5β and KANK1, which in migrating cells organize exocytotic machinery in the vicinity of integrin-based adhesions. Depletion of LL5β or focal adhesion disassembly triggered by myosin II inhibition perturbed the clustering of secretory complexes and attenuated the first wave of insulin release. While previous analyses in vitro and in neurons suggested that secretory machinery might assemble through liquid-liquid phase separation, analysis of endogenously labeled ELKS in pancreatic islets indicated that its dynamics is inconsistent with such a scenario. Instead, fluorescence recovery after photobleaching and single molecule imaging showed that ELKS turnover is driven by binding and unbinding to low-mobility scaffolds. Both the scaffold movements and ELKS exchange were stimulated by glucose treatment. Our findings help to explain how integrin-based adhesions control spatial organization of glucose-stimulated insulin release.


Sign in / Sign up

Export Citation Format

Share Document