A note on one-pebble two-dimensional Turing machines

2003 ◽  
Vol 12 ◽  
pp. 360-371
Author(s):  
A. Inoue ◽  
K. Inoue ◽  
A. Ito ◽  
Y. Wang ◽  
T. Okazaki
Author(s):  
KATSUSHI INOUE ◽  
ITSUO SAKURAMOTO ◽  
MAKOTO SAKAMOTO ◽  
ITSUO TAKANAMI

This paper deals with two topics concerning two-dimensional automata operating in parallel. We first investigate a relationship between the accepting powers of two-dimensional alternating finite automata (2-AFAs) and nondeterministic bottom-up pyramid cellular acceptors (NUPCAs), and show that Ω ( diameter × log diameter ) time is necessary for NUPCAs to simulate 2-AFAs. We then investigate space complexity of two-dimensional alternating Turing machines (2-ATMs) operating in small space, and show that if L (n) is a two-dimensionally space-constructible function such that lim n → ∞ L (n)/ loglog n > 1 and L (n) ≤ log n, and L′ (n) is a function satisfying L′ (n) =o (L(n)), then there exists a set accepted by some strongly L (n) space-bounded two-dimensional deterministic Turing machine, but not accepted by any weakly L′ (n) space-bounded 2-ATM, and thus there exists a rich space hierarchy for weakly S (n) space-bounded 2-ATMs with loglog n ≤ S (n) ≤ log n.


Author(s):  
Serge Miguet ◽  
Annick Montanvert ◽  
P. S. P. Wang

Several nonclosure properties of each class of sets accepted by two-dimensional alternating one-marker automata, alternating one-marker automata with only universal states, nondeterministic one-marker automata, deterministic one-marker automata, alternating finite automata, and alternating finite automata with only universal states are shown. To do this, we first establish the upper bounds of the working space used by "three-way" alternating Turing machines with only universal states to simulate those "four-way" non-storage machines. These bounds provide us a simplified and unified proof method for the whole variants of one-marker and/or alternating finite state machine, without directly analyzing the complex behavior of the individual four-way machine on two-dimensional rectangular input tapes. We also summarize the known closure properties including Boolean closures for all the variants of two-dimensional alternating one-marker automata.


Author(s):  
KENICHI MORITA ◽  
SATOSHI UENO ◽  
KATSUNOBU IMAI

A PCAAG introduced by Morita and Ueno is a parallel array generator on a partitioned cellular automaton (PCA) that generates an array language (i.e. a set of symbol arrays). A "reversible" PCAAG (RPCAAG) is a backward deterministic PCAAG, and thus parsing of two-dimensional patterns can be performed without backtracking by an "inverse" system of the RPCAAG. Hence, a parallel pattern recognition mechanism on a deterministic cellular automaton can be directly obtained from a RPCAAG that generates the pattern set. In this paper, we investigate the generating ability of RPCAAGs and their subclass. It is shown that the ability of RPCAAGs is characterized by two-dimensional deterministic Turing machines, i.e. they are universal in their generating ability. We then investigate a monotonic RPCAAG (MRPCAAG), which is a special type of an RPCAAG that satisfies monotonic constraint. We show that the generating ability of MRPCAAGs is exactly characterized by two-dimensional deterministic linear-bounded automata.


1999 ◽  
Vol 115 (1-4) ◽  
pp. 61-81 ◽  
Author(s):  
Tokio Okazaki ◽  
Katsushi Inoue ◽  
Akira Ito ◽  
Yue Wang

Author(s):  
TOKIO OKAZAKI ◽  
KATSUSHI INOUE ◽  
AKIRA ITO ◽  
YUE WANG

This paper investigates closure property of the classes of sets accepted by space-bounded two-dimensional alternating Turing machines (2-atm's) and space-bounded two-dimensional alternating pushdown automata (2-apda's), and space-bounded two-dimensional alternating counter automata (2-aca's). Let L(m, n): N2 → N (N denotes the set of all positive integers) be a function with two variables m (= the number of rows of input tapes) and n (= the number of columns of input tapes). We show that (i) for any function f(m) = o( log m) (resp. f(m) = o( log m/ log log m)) and any monotonic nondecreasing function g(n) space-constructible by a two-dimensional Turing machine (2-Tm) (resp. two-dimensional pushdown automaton (2-pda)), the class of sets accepted by L(m,n) space-bounded 2-atm's (2-apda's) is not closed under row catenation, row + or projection, and (ii) for any function f(m) = o(m/ log ) (resp. for any function f(m) such that log f(m) = o( log m)) and any monotonic nondecreasing function g(n) space-constructible by a two-dimensional counter automaton (2-ca), the class of sets accepted by L(m, n) space-bounded 2-aca's is not closed under row catenation, row + or projection, where L(m, n) = f(m) + g(n) (resp. L(m, n) = f(m) × g(n)).


1989 ◽  
Vol 47 (2) ◽  
pp. 135-147 ◽  
Author(s):  
Andrzej Szepietowski

Sign in / Sign up

Export Citation Format

Share Document