Neural networks and rule-based systems

Author(s):  
Aldo Aiello ◽  
Ernesto Burattini ◽  
Guglielmo Tamburrini
Author(s):  
Praveen Kumar Dwivedi ◽  
Surya Prakash Tripathi

Background: Fuzzy systems are employed in several fields like data processing, regression, pattern recognition, classification and management as a result of their characteristic of handling uncertainty and explaining the feature of the advanced system while not involving a particular mathematical model. Fuzzy rule-based systems (FRBS) or fuzzy rule-based classifiers (mainly designed for classification purpose) are primarily the fuzzy systems that consist of a group of fuzzy logical rules and these FRBS are unit annexes of ancient rule-based systems, containing the "If-then" rules. During the design of any fuzzy systems, there are two main objectives, interpretability and accuracy, which are conflicting with each another, i.e., improvement in any of those two options causes the decrement in another. This condition is termed as Interpretability –Accuracy Trade-off. To handle this condition, Multi-Objective Evolutionary Algorithms (MOEA) are often applied within the design of fuzzy systems. This paper reviews the approaches to the problem of developing fuzzy systems victimization evolutionary process Multi-Objective Optimization (EMO) algorithms considering ‘Interpretability-Accuracy Trade-off, current research trends and improvement in the design of fuzzy classifier using MOEA in the future scope of authors. Methods: The state-of-the-art review has been conducted for various fuzzy classifier designs, and their optimization is reviewed in terms of multi-objective. Results: This article reviews the different Multi-Objective Optimization (EMO) algorithms in the context of Interpretability -Accuracy tradeoff during fuzzy classification. Conclusion: The evolutionary multi-objective algorithms are being deployed in the development of fuzzy systems. Improvement in the design using these algorithms include issues like higher spatiality, exponentially inhabited solution, I-A tradeoff, interpretability quantification, and describing the ability of the system of the fuzzy domain, etc. The focus of the authors in future is to find out the best evolutionary algorithm of multi-objective nature with efficiency and robustness, which will be applicable for developing the optimized fuzzy system with more accuracy and higher interpretability. More concentration will be on the creation of new metrics or parameters for the measurement of interpretability of fuzzy systems and new processes or methods of EMO for handling I-A tradeoff.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lev Krasnov ◽  
Ivan Khokhlov ◽  
Maxim V. Fedorov ◽  
Sergey Sosnin

AbstractWe developed a Transformer-based artificial neural approach to translate between SMILES and IUPAC chemical notations: Struct2IUPAC and IUPAC2Struct. The overall performance level of our model is comparable to the rule-based solutions. We proved that the accuracy and speed of computations as well as the robustness of the model allow to use it in production. Our showcase demonstrates that a neural-based solution can facilitate rapid development keeping the required level of accuracy. We believe that our findings will inspire other developers to reduce development costs by replacing complex rule-based solutions with neural-based ones.


2021 ◽  
Vol 7 (15) ◽  
pp. eabe4166
Author(s):  
Philippe Schwaller ◽  
Benjamin Hoover ◽  
Jean-Louis Reymond ◽  
Hendrik Strobelt ◽  
Teodoro Laino

Humans use different domain languages to represent, explore, and communicate scientific concepts. During the last few hundred years, chemists compiled the language of chemical synthesis inferring a series of “reaction rules” from knowing how atoms rearrange during a chemical transformation, a process called atom-mapping. Atom-mapping is a laborious experimental task and, when tackled with computational methods, requires continuous annotation of chemical reactions and the extension of logically consistent directives. Here, we demonstrate that Transformer Neural Networks learn atom-mapping information between products and reactants without supervision or human labeling. Using the Transformer attention weights, we build a chemically agnostic, attention-guided reaction mapper and extract coherent chemical grammar from unannotated sets of reactions. Our method shows remarkable performance in terms of accuracy and speed, even for strongly imbalanced and chemically complex reactions with nontrivial atom-mapping. It provides the missing link between data-driven and rule-based approaches for numerous chemical reaction tasks.


Sign in / Sign up

Export Citation Format

Share Document