Pinocembrin protects rats against cerebral ischemic damage through soluble epoxide hydrolase and epoxyeicosatrienoic acids

2013 ◽  
Vol 11 (3) ◽  
pp. 207-213 ◽  
Author(s):  
Shou-Bao WANG ◽  
Xiao-Bin PANG ◽  
Mei GAO ◽  
Lian-Hua FANG ◽  
Guan-Hua DU
2005 ◽  
Vol 288 (1) ◽  
pp. R188-R196 ◽  
Author(s):  
Xueying Zhao ◽  
Aparajita Dey ◽  
Olga P. Romanko ◽  
David W. Stepp ◽  
Mong-Heng Wang ◽  
...  

Previous studies suggest that epoxyeicosatrienoic acids (EETs) are vasodilators of the mesenteric artery; however, the production and regulation of EETs in the mesenteric artery remain unclear. The present study was designed 1) to determine which epoxygenase isoform may contribute to formation of EETs in mesenteric arteries and 2) to determine the regulation of mesenteric artery cytochrome P-450 (CYP) enzymes in obese Zucker rats. Microvessels were incubated with arachidonic acid, and CYP enzyme activity was determined. Mesenteric arteries demonstrate detectable epoxygenase and hydroxylase activities. Next, protein and mRNA expressions were determined in microvessels. Although renal microvessels express CYP2C23 mRNA and protein, mesenteric arteries lacked CYP2C23 expression. CYP2C11 and CYP2J mRNA and protein were expressed in mesenteric arteries and renal microvessels. In addition, mesenteric artery protein expression was evaluated in lean and obese Zucker rats. Compared with lean Zucker rats, mesenteric arterial CYP2C11 and CYP2J proteins were decreased by 38 and 43%, respectively, in obese Zucker rats. In contrast, soluble epoxide hydrolase mRNA and protein expressions were significantly increased in obese Zucker rat mesenteric arteries. In addition, nitric oxide-independent dilation evoked by acetylcholine was significantly attenuated in mesenteric arteries of obese Zucker rats. These data suggest that the main epoxygenase isoforms expressed in mesenteric arteries are different from those expressed in renal microvessels and that decreased epoxygenases and increased soluble epoxide hydrolase are associated with impaired mesenteric artery dilator function in obese Zucker rats.


1995 ◽  
Vol 7 (1) ◽  
pp. 47-52 ◽  
Author(s):  
Bo K. Siesj?? ◽  
Ken-ichiro Katsura ◽  
Tibor Kristi??n

Antioxidants ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 273 ◽  
Author(s):  
Lei Liu ◽  
Marie G. Kelly ◽  
Erika L. Wierzbicki ◽  
Iana C. Escober-Nario ◽  
Mary K. Vollmer ◽  
...  

Cerebral ischemia is a devastating disease with a high incidence of death and disability; however, effective therapeutics remain limited. The transcriptional factor Nrf2 has been shown to play a pivotal role in the endogenous defense against brain oxidative stress and inflammation, and therefore represents a promising target for stroke intervention. However, the long-term effects of Nrf2 and the standardized Korean red ginseng (ginseng), a potent Nrf2 natural inducer, on permanent cerebral ischemic damage have not yet been reported. Wildtype (WT) and Nrf2-/- adult mice were pretreated with either vehicle or ginseng, and were subjected to permanent distal middle cerebral artery occlusion (pdMCAO). The infarct volume, the reactive astrocytes and microglia, and the water regulatory protein aquaporin 4 (AQP4) were examined at 28 days after stroke. When compared with the WT matched controls, the Nrf2 disruption significantly enlarged the infarct volume (40.4 ± 10.1%) and exacerbated the progression of reactive gliosis and AQP4 protein levels after pdMCAO. In contrast, ginseng significantly reduced the infarct volume and attenuated the reactive gliosis and AQP4 in the ischemic WT mice (47.3 ± 6.9%), but not in the Nrf2-/- mice (25.5 ± 5.6%). In conclusion, Nrf2 plays an important role in the long-term recovery of permanent cerebral ischemic damage and the neuroprotection of ginseng.


Sign in / Sign up

Export Citation Format

Share Document