scholarly journals 033: New reference levels for radiation doses to patients undergoing coronary angiography and coronary percutaneous interventions: the RAY ACT study

2013 ◽  
Vol 5 (1) ◽  
pp. 11-12
Author(s):  
Jean-Louis Georges ◽  
Loic Belle ◽  
Khalife Khalife ◽  
Emmanuelle Filippi-Codaccioni ◽  
B. Jouve ◽  
...  
2019 ◽  
Vol 187 (3) ◽  
pp. 378-382
Author(s):  
Jung Su Kim ◽  
Bong-Ki Lee ◽  
Dong Ryeol Ryu ◽  
Kwang Jin Chun ◽  
Hyun-Hee Choi ◽  
...  

Abstract Interventional cardiology procedures can involve relatively high radiation doses compared to general radiography. During coronary angiography (CAG) and percutaneous transluminal coronary intervention (PCI), the same area is exposed to radiation for a long period. In this study, radiation exposure data of 1071 examinations in Korean hospitals were collected, and the achievable dose (AD) and diagnostic reference levels (DRLs) in actual medical practice for two types of interventional cardiology procedures in Korea were established. In CAG, 75th percentile DRLs and AD of the total kerma-area product were 47.0 and 33.1 Gy·cm 2, respectively. In PCI, those values were 171.3 and 102.6 Gy·cm2, respectively. This is the first study to introduce the DRLs for cardiovascular interventional procedures in Korea. These results will help optimise the interventional cardiology procedures for Korean cardiac centres.


Hand ◽  
2021 ◽  
pp. 155894472199425
Author(s):  
Kiran R. Madhvani ◽  
Matthew J. R. Clark ◽  
Alex A. J. Kocheta

Background: Diagnostic reference levels are radiation dose levels in medical radiodiagnostic practices for typical examinations for groups of standard-sized individuals for broadly defined types of equipment. This study aimed to contribute to national diagnostic reference levels for common hand and wrist procedures using mini C-arm fluoroscopy. Small joint and digital fracture procedure diagnostic reference levels have not been reported in significant numbers previously with procedure-level stratification. Methods: Data were collected from fluoroscopy logbooks and were cross-referenced against the audit log kept on fluoroscopy machines. A total of 603 procedures were included. Results: The median radiation dose for wrist fracture open fixation was 2.73 cGycm2, Kirschner wiring (K-wiring) procedures was 2.36 cGycm2, small joint arthrodesis was 1.20 cGycm2, small joint injections was 0.58 cGycm2, and phalangeal fracture fixation was 1.05 cGycm2. Conclusions: Wrist fracture fixation used higher radiation doses than phalangeal fracture fixation, arthrodeses, and injections. Injections used significantly less radiation than the other procedures. There are significant differences in total radiation doses when comparing these procedures in hand and wrist surgery. National and international recommendations are that institutional audit data should be collected regularly and should be stratified by procedure type. This study helps to define standards for this activity by adding to the data available for wrist fracture diagnostic reference levels and defining standards for digital and injection procedures.


2022 ◽  
Author(s):  
M. El Mansouri ◽  
M. Talbi ◽  
A. Choukri ◽  
O. Nhila ◽  
M. Aabid

In Morocco, the radiation doses received by adult patients are increasing due to the number of CT examinations performed and the larger number of computed tomography (CT) scanners installed. The aim of this study was to evaluate the radiation doses received by patients for the most common adult CT examinations in order to establish local diagnostic reference levels (DRLs). Data from 1016 adult patients were collected during 3 months from four Moroccan hospitals. Dose length product (DLP) and volumetric computed tomography dose index (CTDIvol) were evaluated by determining the 75th percentile as diagnostic reference levels for the most common examinations including head, chest and abdomen. The DRL for each examination was compared with other studies. The established DRLs in Morocco in terms of CTDIvol were 57.4, 12.3 and 10.9 for CT examinations of the head, chest, abdomen, respectively. For DLP, they were 1020, 632 and 714, respectively. These established DRLs for CTDIvol were almost similar to the UK DRLs at all examinations, higher than the Egyptian DRLs and lower than the Japanese DRLs at the head CT examination, lower than the DRLs from Egypt and Japan at the CT abdomen examination. In terms of DLP, the DRLs were higher than those of the British studies, lower than those of the Egyptian and Japanese studies at the head CT examination were higher at chest CT and lower at abdominal CT than those of all selected studies. The higher level of established DRLs in our study demonstrates the requirement of an optimization process while keeping a good image quality for a reliable diagnosis.


2021 ◽  
Vol 17 (3) ◽  
pp. 216-221
Author(s):  
Fawad Yasin ◽  
Anum Rasheed ◽  
Muhammad Nauman Malik ◽  
Farheen Raza ◽  
Ramish Riaz ◽  
...  

OBJECTIVE - The purpose of this study was to assess the radiation dose levels from common computed tomography (CT) examinations performed in Radiology Department of Pakistan Institute of Medical Sciences (PIMS), and evaluate these according to diagnostic reference levels (DRLs) proposed by European Commission (EC) guidelines, and thus contributing towards the establishment of local and national DRLs. To the best of our knowledge, this is the first study of its kind to explore radiation doses from CT examinations in Pakistan. STUDY DESIGN - This was a quantitative study conducted at PIMS, Islamabad, spanning a duration of eight weeks. Scan parameters and dose profile data of 1506 adults undergoing examinations of head, neck, chest and abdomen-pelvis regions, comprising of single- and multi-phase, contrast-enhanced and unenhanced studies. Dose indicators utilized by EC guidelines for DRLs include volume CT dose index (CTDIvol) and Dose Length Product (DLP) for single slice and complete examination radiation doses, respectively. METHOD - Values of CTDIvol, DLP and scan lengths were extracted from the CT operators console. Other control variables included gender, contrast enhancement and phasicity of study. IBM SPSS package was used to obtain descriptive statistics such as mean and quartiles. RESULTS - DRLs calculated as 75th percentile of CTDIvol, DLP for various anatomical regions are by and far comparable to European DRLs. CONCLUSION – This study describes institutional diagnostic reference levels for common CT exams in Islamabad and provides benchmark values for future reference. Our DRL values are mostly comparable to European and international DRLs. Similar, albeit large scale, surveys are recommended for establishment of local and national DRLs, eventually contributing towards development of regional DRLs. KEYWORDS: CTDIvol, DLP, Diagnostic Reference Levels, Computed Tomography, Radiation Monitoring, Scan length


2019 ◽  
Vol 74 (13) ◽  
pp. B196
Author(s):  
Erica Osip ◽  
Sheetal Maragiri ◽  
Sabina Shamayeva ◽  
Paulina Phomvongsa ◽  
Sheridan Reed ◽  
...  

2020 ◽  
Vol 190 (4) ◽  
pp. 364-371
Author(s):  
Nadia Khelassi-Toutaoui ◽  
Ahmed Merad ◽  
Virginia Tsapaki ◽  
Fouzia Meddad ◽  
Zakia Sakhri-Brahimi ◽  
...  

Abstract A pilot study has concerned the most frequent computed tomography examinations (CT). This represents the first results based on actual survey for diagnostic reference levels (DRLs) establishment in Algeria. A total number of 2540 patients underwent this survey that has included the recording of CT parameters, computed tomography dose index (CTDIvol) and dose-length product of the head, thorax, abdomen, abdomen–pelvis (AP), lumbar spine (LS) and thorax–abdomen–pelvis (TAP) performed on standard patients. The proposed DRLs are 71 mGy/1282 mGy.cm for head, 16 mGy/555 mGy.cm for thorax, 18 mGy/671 mGy.cm for abdomen, 21 mGy/950 mGy.cm for AP, 36 mGy/957 mGy.cm for LS and 18 mGy/994 mGy.cm for TAP. The rounded 75th percentile seems to be higher in some examinations compared to the literature. Our findings confirm the need to optimise our practice. These results provide a starting point for institutional evaluation of CT radiation doses.


Sign in / Sign up

Export Citation Format

Share Document