ct dose
Recently Published Documents


TOTAL DOCUMENTS

422
(FIVE YEARS 86)

H-INDEX

26
(FIVE YEARS 2)

Author(s):  
Monica Bernardo ◽  
Fatemeh Homayounieh ◽  
Maria Cristina Rodel Cuter ◽  
Luiz Mário Bellegard ◽  
Homero Medeiros Oliveira Junior ◽  
...  

Abstract We assessed variations in chest CT usage, radiation dose and image quality in COVID-19 pneumonia. Our study included all chest CT exams performed in 533 patients from 6 healthcare sites from Brazil. We recorded patients’ age, gender and body weight and the information number of CT exams per patient, scan parameters and radiation doses (volume CT dose index—CTDIvol and dose length product—DLP). Six radiologists assessed all chest CT exams for the type of pulmonary findings and classified CT appearance of COVID-19 pneumonia as typical, indeterminate, atypical or negative. In addition, each CT was assessed for diagnostic quality (optimal or suboptimal) and presence of artefacts. Artefacts were frequent (367/841), often related to respiratory motion (344/367 chest CT exams with artefacts) and resulted in suboptimal evaluation in mid-to-lower lungs (176/344) or the entire lung (31/344). There were substantial differences in CT usage, patient weight, CTDIvol and DLP across the participating sites.


Author(s):  
T Amalaraj ◽  
Duminda Satharasinghe ◽  
Aruna Pallewatte ◽  
Jeyasingam Jeyasugiththan

Abstract The main purpose of this study was to establish the national diagnostic reference levels (NDRLs) for common CT procedures for the first time in Sri Lanka. Patient morphometric, exposure parameters, and dose data such as volume CT dose index (CTDIvol) and dose length product (DLP) were collected from 5666 patients who underwent 22 procedure types. The extreme dose values were filteblue before analysis to ensure that the data comes from standard size patients. The median of the dose distribution was calculated for each institution, and the third quartile value of the median distribution was consideblue as the NDRL. Based on the inclusion and exclusion criteria, 4592 patients data from 17 procedure types were consideblue for NDRL establishment covering 41\% of the country's total CT machines. The proposed NDRLs based on CTDIvol and DLP for non-contrast (NC) head:82.2 mGy/1556 mGy.cm, contrast-enhanced (CE) head: 82.2 mGy/1546 mGy.cm, chest-NC:7.4 mGy/350 mGy.cm, chest-CE:8.3 mGy/464 mGy.cm, abdomen NC:10.5 mGy/721 mGy.cm, abdomen arterial (A) phase:13.4 mGy/398 mGy.cm, abdomen venous (V) phase:10.8 mGy/460 mGy.cm, abdomen delay (D) phase:12.6 mGy/487 mGy.cm, sinus NC:30.2 mGy/452 mGy.cm, lumbar spine--NC:24.1 mGy/1123 mGy.cm, neck-NC:27.5 mGy/670 mGy.cm, high resolutions CT (HRCT) of chest:10.3 mGy/341 mGy.cm, kidney, ureter and bladder (KUB) NC:19.4 mGy/929 mGy.cm, chest to pelvis (CAP) NC:10.8 mGy/801 mGy.cm, CAP-A:10.4 mGy/384 mGy.cm, CAP-V:10.5 mGy/534 mGy.cm and CAP-D:16.8 mGy/652 mGy.cm. Although the proposed NDRLs are comparable with other countries, the observed broad dose distributions between the CT machines within the country indicate that dose optimisation strategies for Sri Lanka should be implemented for most of the CT facilities.


Author(s):  
Philip W. Chu ◽  
Sophronia Yu ◽  
Yifei Wang ◽  
J. Anthony Seibert ◽  
Luisa F. Cervantes ◽  
...  

Abstract Background Radiation dose metrics vary by the calibration reference phantom used to report doses. By convention, 16-cm diameter cylindrical polymethyl-methacyrlate phantoms are used for head imaging and 32-cm diameter phantoms are used for body imaging in adults. Actual usage patterns in children remain under-documented. Objective This study uses the University of California San Francisco International CT Dose Registry to describe phantom selection in children by patient age, body region and scanner manufacturer, and the consequent impact on radiation doses. Materials and methods For 106,837 pediatric computed tomography (CT) exams collected between Jan. 1, 2015, and Nov. 2, 2020, in children up to 17 years of age from 118 hospitals and imaging facilities, we describe reference phantom use patterns by body region, age and manufacturer, and median and 75th-percentile dose–length product (DLP) and volume CT dose index (CTDIvol) doses when using 16-cm vs. 32-cm phantoms. Results There was relatively consistent phantom selection by body region. Overall, 98.0% of brain and skull examinations referenced 16-cm phantoms, and 95.7% of chest, 94.4% of abdomen and 100% of cervical-spine examinations referenced 32-cm phantoms. Only GE deviated from this practice, reporting chest and abdomen scans using 16-cm phantoms with some frequency in children up to 10 years of age. DLP and CTDIvol values from 16-cm phantom-referenced scans were 2–3 times higher than 32-cm phantom-referenced scans. Conclusion Reference phantom selection is highly consistent, with a small but significant number of abdomen and chest scans (~5%) using 16-cm phantoms in younger children, which produces DLP values approximately twice as high as exams referenced to 32-cm phantoms


2021 ◽  
Author(s):  
Paulo R. Costa ◽  
Denise Y. Nersissian ◽  
Nancy K. Umisedo ◽  
Alejandro H. L. Gonzales ◽  
José M. Fernández‐Varea

2021 ◽  
Vol 17 (3) ◽  
pp. 216-221
Author(s):  
Fawad Yasin ◽  
Anum Rasheed ◽  
Muhammad Nauman Malik ◽  
Farheen Raza ◽  
Ramish Riaz ◽  
...  

OBJECTIVE - The purpose of this study was to assess the radiation dose levels from common computed tomography (CT) examinations performed in Radiology Department of Pakistan Institute of Medical Sciences (PIMS), and evaluate these according to diagnostic reference levels (DRLs) proposed by European Commission (EC) guidelines, and thus contributing towards the establishment of local and national DRLs. To the best of our knowledge, this is the first study of its kind to explore radiation doses from CT examinations in Pakistan. STUDY DESIGN - This was a quantitative study conducted at PIMS, Islamabad, spanning a duration of eight weeks. Scan parameters and dose profile data of 1506 adults undergoing examinations of head, neck, chest and abdomen-pelvis regions, comprising of single- and multi-phase, contrast-enhanced and unenhanced studies. Dose indicators utilized by EC guidelines for DRLs include volume CT dose index (CTDIvol) and Dose Length Product (DLP) for single slice and complete examination radiation doses, respectively. METHOD - Values of CTDIvol, DLP and scan lengths were extracted from the CT operators console. Other control variables included gender, contrast enhancement and phasicity of study. IBM SPSS package was used to obtain descriptive statistics such as mean and quartiles. RESULTS - DRLs calculated as 75th percentile of CTDIvol, DLP for various anatomical regions are by and far comparable to European DRLs. CONCLUSION – This study describes institutional diagnostic reference levels for common CT exams in Islamabad and provides benchmark values for future reference. Our DRL values are mostly comparable to European and international DRLs. Similar, albeit large scale, surveys are recommended for establishment of local and national DRLs, eventually contributing towards development of regional DRLs. KEYWORDS: CTDIvol, DLP, Diagnostic Reference Levels, Computed Tomography, Radiation Monitoring, Scan length


2021 ◽  
Vol 7 (2) ◽  
pp. 227-230
Author(s):  
Verena Gorges ◽  
Waldemar Zylka

Abstract Cone-Beam computed tomography (CBCT) has become the most important component of modern radiotherapy for positioning tumor patients directly before treatment. In this work we investigate alternations to standard acquisition protocol, called preset, for patients with a tumor in the thoracic region. The effects of the changed acquisition parameters on the image quality are evaluated using the Catphan Phantom and the image analysis software Smári. The weighted CT dose index (CTDIW) is determined in each case and the effects of the different acquisition protocols on the patient dose are classified accordingly. Additionally, the clinical suitability of alternative presets is tested by investigating correctness of image registration using the CIRS thorax phantom. The results show that a significant dose reduction can be achieved. It can be reduced by 51% for a full rotation by adjusting the gantry speed. A more patientspecific uptake protocol for patients with laterally located tumor was created which allows a dose reduction of 54%.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Hendrik Joost Wisselink ◽  
Gert Jan Pelgrim ◽  
Mieneke Rook ◽  
Ivan Dudurych ◽  
Maarten van den Berge ◽  
...  

AbstractAssessment of image noise is a relevant issue in computed tomography (CT). Noise is routinely measured by the standard deviation of density values (Hounsfield units, HU) within a circular region of interest (ROI). We explored the effect of a spherical volume of interest (VOI) on noise measurements. Forty-nine chronic obstructive pulmonary disease patients underwent CT with clinical protocol (regular dose [RD], volumetric CT dose index [CTDIvol] 3.04 mGy, 64-slice unit), and ultra-low dose (ULD) protocol (median CTDIvol 0.38 mGy, dual-source unit). Noise was measured in 27 1-cm2 ROIs and 27 0.75-cm3 VOIs inside the trachea. Median true noise was 21 HU (range 17-29) for RD-CT and 33 HU (26-39) for ULD-CT. The VOI approach resulted in a lower mean distance between limits of agreement compared to ROI: 5.9 versus 10.0 HU for RD-CT (−40%); 4.7 versus 9.9 HU for ULD-CT (−53%). Mean systematic bias barely changed: −1.6 versus −0.9HU for RD-CT; 0.0 to 0.4HU for ULD-CT. The average measurement time was 6.8 s (ROI) versus 9.7 (VOI), independent of dose level. For chest CT, measuring noise with a VOI-based instead of a ROI-based approach reduces variability by 40-53%, without a relevant effect on systematic bias and measurement time.


2021 ◽  
Vol 27 (3) ◽  
pp. 213-222
Author(s):  
Winda Kusuma Dewi ◽  
Choirul Anam ◽  
Eko Hidayanto ◽  
Arrum Nitasari ◽  
Geoff Dougherty

Abstract Purpose: The aim of this work was to establish the relationships of patient size in terms of effective diameter (Deff) and water-equivalent diameter (Dw) with lateral (LAT) and anterior-posterior (AP) dimensions in order to predict the specific patient dose for thoracic, abdominal, and pelvic computed tomography (CT) examinations. Methods: A total of 47 thoracic images, 79 abdominal images, and 50 pelvic images were analyzed in this study. The patient’s images were retrospectively collected from Dr. Kariadi and Kensaras Hospitals, Semarang, Indonesia. The slices measured were taken from the middle of the scan range. The calculations of patient sizes (LAT, AP, Deff, and Dw) were automatically performed by IndoseCT 20b software. Deff and Dw were plotted as functions of LAT, AP, and AP+LAT. In addition, Dw was plotted as a function of Deff. Results: Strong correlations of Deff and Dw with LAT, AP, and AP+LAT were found. Stronger correlations were found in the Deff curves (R2 > 0.9) than in the Dw curves (R2 > 0.8). It was found that the average Deff was higher than the average Dw in the thoracic region, the average values were similar in the abdominal and pelvic regions. Conclusion: The current study extended the study of the relationships between Deff and Dw and the basic geometric diameter LAT, AP, and AP+LAT beyond those previously reported by AAPM. We evaluated the relationships for three regions, i.e. thoracic, abdominal, and pelvic regions. Based on our findings, it was possible to estimate Deff and Dw from only the LAT or AP dimension.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256564
Author(s):  
Jung Han Hwang ◽  
Jin Mo Kang ◽  
So Hyun Park ◽  
Suyoung Park ◽  
Jeong Ho Kim ◽  
...  

Objective We compared the image quality according to the radiation dose on computed tomography (CT) venography at 80 kVp using advanced modeled iterative reconstruction for deep vein thrombus and other specific clinical conditions considering standard-, low-, and ultralow-dose CT. Methods In this retrospective study, 105 consecutive CT venography examinations were included using a third-generation dual-source scanner in the dual-source mode in tubes A (reference mAs, 210 mAs at 70%) and B (reference mAs, 90 mAs at 30%) at a fixed 80 kVp. Two radiologists independently reviewed each observation of standard- (100% radiation dose), low- (70%), and ultralow-dose (30%) CT. The objective quality of large veins and subjective image quality regarding lower-extremity veins and deep vein thrombus were compared between images according to the dose. In addition, the CT dose index volumes were displayed from the images. Results From the patients, 24 presented deep vein thrombus in 69 venous segments of CT examinations. Standard-dose CT provided the lowest image noise at the inferior vena cava and femoral vein compared with low- and ultralow-dose CT (p < 0.001). There were no differences regarding subjective image quality between the images of popliteal and calf veins at the three doses (e.g., 3.8 ± 0.7, right popliteal vein, p = 0.977). The image quality of the 69 deep vein thrombus segments showed equally slightly higher scores in standard- and low-dose CT (4.0 ± 0.2) than in ultralow-dose CT (3.9 ± 0.4). The CT dose index volumes were 4.4 ± 0.6, 3.1 ± 0.4, and 1.3 ± 0.2 mGy for standard-, low-, and ultralow-dose CT, respectively. Conclusions Low- and ultralow-dose CT venography at 80 kVp using an advanced model based iterative reconstruction algorithm allows to evaluate deep vein thrombus and perform follow-up examinations while showing an acceptable image quality and reducing the radiation dose.


Sign in / Sign up

Export Citation Format

Share Document