scholarly journals Non-typeable Haemophilus influenzae–Moraxella catarrhalis vaccine for the prevention of exacerbations in chronic obstructive pulmonary disease: a multicentre, randomised, placebo-controlled, observer-blinded, proof-of-concept, phase 2b trial

Author(s):  
Stefan Andreas ◽  
Marco Testa ◽  
Laurent Boyer ◽  
Guy Brusselle ◽  
Wim Janssens ◽  
...  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lucio Malvisi ◽  
◽  
Laura Taddei ◽  
Aparna Yarraguntla ◽  
Tom M. A. Wilkinson ◽  
...  

Abstract Background Infection with Haemophilus influenzae (Hi) or Moraxella catarrhalis (Mcat) is a risk factor for exacerbation in chronic obstructive pulmonary disease (COPD). The ability to predict Hi- or Mcat-associated exacerbations may be useful for interventions developed to reduce exacerbation frequency. Methods In a COPD observational study, sputum samples were collected at monthly stable-state visits and at exacerbation during two years of follow-up. Bacterial species (Hi, Mcat) were identified by culture and quantitative PCR assay. Post-hoc analyses were conducted to assess: (1) first Hi- or Mcat-positive exacerbations given presence or absence of Hi or Mcat at the screening visit (stable-state timepoint); (2) first Hi- or Mcat-positive exacerbations given presence or absence of Hi or Mcat at stable timepoints within previous 90 days; (3) second Hi- or Mcat-positive exacerbations given presence or absence of Hi or Mcat at stable timepoints within previous 90 days. Percentages and risk ratios (RRs) with 95% confidence intervals were calculated. Results PCR results for analyses 1, 2 and 3 (samples from 84, 88 and 83 subjects, respectively) showed that the risk of an Hi- or Mcat-positive exacerbation is significantly higher if sputum sample was Hi- or Mcat-positive than if Hi- or Mcat-negative at previous stable timepoints (apart from Mcat in analysis 3); RRs ranged from 2.1 to 3.2 for Hi and 1.9 to 2.6 for Mcat.For all analyses, the percentage of Hi- or Mcat-positive exacerbations given previous Hi- or Mcat-positive stable timepoints was higher than the percentage of Hi- or Mcat-positive exacerbations if Hi- or Mcat-negative at previous stable timepoints. Percentage of Hi- or Mcat-positive exacerbations given previous Hi- or Mcat-negative stable timepoints was 26.3%–37.0% for Hi and 17.6%–19.7% for Mcat. Conclusions Presence of Hi or Mcat at a stable timepoint was associated with a higher risk of a subsequent Hi- or Mcat-associated exacerbation compared with earlier absence. However, a large percentage of Hi- or Mcat-associated exacerbations was not associated with Hi/Mcat detection at an earlier timepoint. This suggests that administration of an intervention to reduce these exacerbations should be independent of bacterial presence at baseline. Trial Registrationhttps://clinicaltrials.gov/; NCT01360398, registered May 25, 2011


2008 ◽  
Vol 76 (10) ◽  
pp. 4463-4468 ◽  
Author(s):  
Deborah M. Cholon ◽  
David Cutter ◽  
Stephen K. Richardson ◽  
Sanjay Sethi ◽  
Timothy F. Murphy ◽  
...  

ABSTRACT In patients with chronic obstructive pulmonary disease (COPD), the lower respiratory tract is commonly colonized by bacterial pathogens, including nontypeable Haemophilus influenzae. The H. influenzae HMW1 and HMW2 adhesins are homologous proteins that promote bacterial adherence to respiratory epithelium and are the predominant targets of the host immune response. These adhesins undergo graded phase variation, controlled by the numbers of 7-bp repeats upstream of the HMW1 and HMW2 structural genes (hmw1A and hmw2A, respectively). In this study, we examined the levels of HMW1 and HMW2 expressed by H. influenzae isolates collected serially from patients with COPD. We found that expression of HMW1 and HMW2 in a given strain decreased over time in a majority of patients, reflecting progressive increases in the numbers of 7-bp repeats and associated with high serum titers of HMW1/HMW2-specific antibodies. We speculate that the presence of high titers of antibodies against the HMW1 and HMW2 adhesins and other immune factors in the lower respiratory tracts of patients with COPD may result in gradual selection for bacteria with reduced levels of HMW1 and HMW2.


Sign in / Sign up

Export Citation Format

Share Document