The Gravity Field of the Earth, Part 1

2021 ◽  
pp. 177-188
Keyword(s):  
2021 ◽  
Author(s):  
Xingfu Zhang ◽  
Qiujie Chen ◽  
Yunzhong Shen

<p>      Although the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE FO) satellite missions play an important role in monitoring global mass changes within the Earth system, there is a data gap of about one year spanning July 2017 to May 2018, which leads to discontinuous gravity observations for monitoring global mass changes. As an alternative mission, the SWARM satellites can provide gravity observations to close this data gap. In this paper, we are dedicated to developing alternative monthly time-variable gravity field solutions from SWARM data. Using kinematic orbits of SWARM from ITSG for the period January 2015 to September 2020, we have generated a preliminary time series of monthly gravity field models named Tongji-Swarm2019 up to degree and order 60. The comparisons between Tongji-Swarm2019 and GRACE/GRACE-FO monthly solutions show that Tongji-Swarm2019 solutions agree with GRACE/GRACE-FO models in terms of large-scale mass change signals over amazon, Greenland and other regions. We can conclude that Tongji-Swarm2019 monthly gravity field models are able to close the gap between GRACE and GRACE FO.</p>


2020 ◽  
Vol 55 (3) ◽  
pp. 100-117
Author(s):  
Viktor Szabó ◽  
Dorota Marjańska

AbstractGlobal satellite gravity measurements provide unique information regarding gravity field distribution and its variability on the Earth. The main cause of gravity changes is the mass transportation within the Earth, appearing as, e.g. dynamic fluctuations in hydrology, glaciology, oceanology, meteorology and the lithosphere. This phenomenon has become more comprehensible thanks to the dedicated gravimetric missions such as Gravity Recovery and Climate Experiment (GRACE), Challenging Minisatellite Payload (CHAMP) and Gravity Field and Steady-State Ocean Circulation Explorer (GOCE). From among these missions, GRACE seems to be the most dominating source of gravity data, sharing a unique set of observations from over 15 years. The results of this experiment are often of interest to geodesists and geophysicists due to its high compatibility with the other methods of gravity measurements, especially absolute gravimetry. Direct validation of gravity field solutions is crucial as it can provide conclusions concerning forecasts of subsurface water changes. The aim of this work is to present the issue of selection of filtration parameters for monthly gravity field solutions in RL06 and RL05 releases and then to compare them to a time series of absolute gravimetric data conducted in quasi-monthly measurements in Astro-Geodetic Observatory in Józefosław (Poland). The other purpose of this study is to estimate the accuracy of GRACE temporal solutions in comparison with absolute terrestrial gravimetry data and making an attempt to indicate the significance of differences between solutions using various types of filtration (DDK, Gaussian) from selected research centres.


2021 ◽  
Author(s):  
Basara Miyahara ◽  
Laura Sánchez ◽  
Martin Sehnal

<p>The Global Geodetic Observing System (GGOS) is the contribution of Geodesy to the observation and monitoring of the Earth System. Geodesy is the science of determining and representing the shape of the Earth, its gravity field and its rotation as a function of time. A core element to reach this goal are stable and consistent geodetic reference frames, which provide the fundamental layer for the determination of time-dependent coordinates of points or objects, and for describing the motion of the Earth in space. Traditionally, geodetic reference frames have been used for surveying, mapping, and space-based positioning and navigation. With modern instrumentation and analytical techniques, Geodesy is now capable of detecting time variations ranging from large and secular scales to very small and transient deformations with increasing spatial and temporal resolution, high accuracy, and decreasing latency. GGOS has been working closely with components of International Association of Geodesy (IAG) to provide consistent and openly available observations of the spatial and temporal changes of the shape and gravity field of the Earth, as well as the temporal variations of the Earth’s rotation. These efforts make available a global picture of the surface kinematics of our planet, including the ocean, ice cover, continental water, and land surfaces, as well as estimates of mass anomalies, mass transport, and mass exchange in the System Earth. Surface kinematics and mass transport together are the key to global mass balance determination, and are an important contribution to understanding the energy budget of our planet. In order to play its vital role, GGOS has following missions; a) to provide the observations needed to monitor, map, and understand changes in the Earth’s shape, rotation, and mass distribution, b) to provide the global geodetic frame of reference that is the fundamental backbone for measuring and consistently interpreting key global change processes and for many other scientific and societal applications, c) to benefit science and society by providing the foundation upon which advances in Earth and planetary system science and applications are built. For the mission, GGOS works tighter with components of the IAG, more specifically, IAG Services, IAG Commissions and IAG Inter-Commission Committees. The IAG Services provide the infrastructure and products on which all contributions of GGOS are based, and the IAG Commissions and IAG Inter-Commission Committees provide expertise and support to address key scientific issues within GGOS. Together with the IAG components, GGOS provides the fundamental infrastructure underpinning Earth sciences and their applications.</p>


2018 ◽  
Vol 8 (1) ◽  
pp. 145-153 ◽  
Author(s):  
O.I. Apeh ◽  
E.C. Moka ◽  
V.N. Uzodinma

Abstract Spherical harmonic expansion is a commonly applied mathematical representation of the earth’s gravity field. This representation is implied by the potential coeffcients determined by using elements/parameters of the field observed on the surface of the earth and/or in space outside the earth in the spherical harmonic expansion of the field. International Centre for Gravity Earth Models (ICGEM) publishes, from time to time, Global Gravity Field Models (GGMs) that have been developed. These GGMs need evaluation with terrestrial data of different locations to ascertain their accuracy for application in those locations. In this study, Bouguer gravity anomalies derived from a total of eleven (11) recent GGMs, using sixty sample points, were evaluated by means of Root-Mean-Square difference and correlation coeficient. The Root-Mean-Square differences of the computed Bouguer anomalies from ICGEMwebsite compared to their positionally corresponding terrestrial Bouguer anomalies range from 9.530mgal to 37.113mgal. Additionally, the correlation coe_cients of the structure of the signal of the terrestrial and GGM-derived Bouguer anomalies range from 0.480 to 0.879. It was observed that GECO derived Bouguer gravity anomalies have the best signal structure relationship with the terrestrial data than the other ten GGMs. We also discovered that EIGEN-6C4 and GECO derived Bouguer anomalies have enormous potential to be used as supplements to the terrestrial Bouguer anomalies for Enugu State, Nigeria.


Sign in / Sign up

Export Citation Format

Share Document