Assessing Climate-Change Impacts at the Regional Scale

2020 ◽  
Author(s):  
Nicola Pergola ◽  
Carmine Serio ◽  
Francesco Ripullone ◽  
Francesco Marchese ◽  
Giuseppe Naviglio ◽  
...  

<p>The OT4CLIMA project, funded by the Italian Ministry of Education, University and Research, within the PON 2014-2020 Industrial Research program, “Aerospace” thematic domain, aims at developing advanced Earth Observation (EO) technologies and methodologies for improving our capability to better understand the effects of Climate Change (CC) and our capability to mitigate them at the regional and sub-regional scale. Both medium-to-long term impacts (e.g. vegetation stress, drought) and extreme events with rapid dynamics (e.g. intense meteorological phenomena, fires) will be investigated, trying a twofold (i.e. interesting both “products” and “processes”) technological innovation: a) through the design and the implementation of advanced sensors to be mounted on multiplatform EO systems; b) through the development of advanced methodologies for EO data analysis, interpretation, integration and fusion.</p><p>Activities will focus on two of the major natural processes strictly related to Climate Change, namely the Carbon and Water Cycles by using an inter-disciplinary approach.</p><p>As an example, the project will make it possible the measurements, with an unprecedented accuracy of atmospheric (e.g. OCS, carbon-sulphide) and surface (e.g. soil moisture) parameters that are crucial in determining the vegetation contribution to the CO2 balance, suggesting at the same time solutions based on the analysis and integration of satellite, airborne and unmanned data, in order to significantly improve the capability of local communities to face the short- and long-term CC-related effects.</p><p>OT4CLIMA benefits from a strong scientific expertise (14 CNR institutes, ASI, INGV, CIRA, 3 Universities), considerable research infrastructures and a wide industrial partnership (including both big national players, i.e. E-Geos and IDS companies and well-established italian SMEs consortia, i.e. CREATEC, CORISTA and SIIT, and a spin-off company, Survey Lab) specifically focused on the technological innovation frontier.</p><p>This contribution would summarize the project main objectives and show some activities so far carried out.</p>


2015 ◽  
Vol 95 (1) ◽  
pp. 49-61 ◽  
Author(s):  
Ted Huffman ◽  
Budong Qian ◽  
Reinder De Jong ◽  
Jiangui Liu ◽  
Hong Wang ◽  
...  

Huffman, T., Qian, B., De Jong, R., Liu, J., Wang, H., McConkey, B., Brierley, T. and Yang, J. 2015. Upscaling modelled crop yields to regional scale: A case study using DSSAT for spring wheat on the Canadian prairies. Can. J. Soil Sci. 95: 49–61. Dynamic crop models are often operated at the plot or field scale. Upscaling is necessary when the process-based crop models are used for regional applications, such as forecasting regional crop yields and assessing climate change impacts on regional crop productivity. Dynamic crop models often require detailed input data for climate, soil and crop management; thus, their reliability may decrease at the regional scale as the uncertainty of simulation results might increase due to uncertainties in the input data. In this study, we modelled spring wheat yields at the level of numerous individual soils using the CERES–Wheat model in the Decision Support System for Agrotechnology Transfer (DSSAT) and then aggregated the simulated yields from individual soils to regions where crop yields were reported. A comparison between the aggregated and the reported yields was performed to examine the potential of using dynamic crop models with individual soils in a region for the simulation of regional crop yields. The regionally aggregated simulated yields demonstrated reasonable agreement with the reported data, with a correlation coefficient of 0.71 and a root-mean-square error of 266 kg ha−1 (i.e., 15% of the average yield) over 40 regions on the Canadian prairies. Our conclusion is that aggregating simulated crop yields on individual soils with a crop model can be reliable for the estimation of regional crop yields. This demonstrated its potential as a useful approach for using crop models to assess climate change impacts on regional crop productivity.


2012 ◽  
Vol 9 (11) ◽  
pp. 13037-13081 ◽  
Author(s):  
E. Sproles ◽  
A. Nolin ◽  
K. Rittger ◽  
T. Painter

Abstract. Globally maritime snow comprises 10% of seasonal snow and is considered highly sensitive to changes in temperature. This study investigates the effect of climate change on maritime mountain snowpack in the McKenzie River Basin (MRB) in the Cascades Mountains of Oregon, USA. Melt water from the MRB's snowpack provides critical water supply for agriculture, ecosystems, and municipalities throughout the region especially in summer when water demand is high. Because maritime snow commonly falls at temperatures close to 0 °C, accumulation of snow versus rainfall is highly sensitive to temperature increases. Analyses of current climate and projected climate change impacts show rising temperatures in the region. To better understand the sensitivity of snow accumulation to increased temperatures, we modeled the spatial distribution of snow water equivalent (SWE) in the MRB for the period of 1989–2009 with the SnowModel spatially distributed model. Simulations were evaluated using point-based measurements of SWE, precipitation, and temperature that showed Nash-Sutcliffe Efficiency coefficients of 0.83, 0.97, and 0.80, respectively. Spatial accuracy was shown to be 82% using snow cover extent from the Landsat Thematic Mapper. The validated model was used to evaluate the sensitivity of snowpack to projected temperature increases and variability in precipitation, and how changes were expressed in the spatial and temporal distribution of SWE. Results show that a 2 °C increase in temperature would shift peak snowpack 12 days earlier and decrease basin-wide volumetric snow water storage by 56%. Snowpack between the elevations of 1000 and 1800 m is the most sensitive to increases in temperature. Upper elevations were also affected, but to a lesser degree. Temperature increases are the primary driver of diminished snowpack accumulation, however variability in precipitation produce discernible changes in the timing and volumetric storage of snowpack. This regional scale study serves as a case study, providing a modeling framework to better understand the impacts of climate change in similar maritime regions of the world.


2021 ◽  
Vol 169 (1-2) ◽  
Author(s):  
Daniel Feldmeyer ◽  
Joern Birkmann ◽  
Joanna M. McMillan ◽  
Lindsay Stringer ◽  
Walter Leal Filho ◽  
...  

AbstractClimate change impacts and their consequences are determined not only by the intensity and frequency of different climatic hazards but also by the vulnerability of the system, society or community exposed. While general agreement exists about the importance of assessing vulnerability to understand climate risks, there is still a tendency to neglect global and regional vulnerability patterns because they are hard to quantify, despite their value in informing adaptation, disaster risk and development policies. Several approaches to quantifying global vulnerability exist. These differ in terms of the indicators they use and how they classify countries or regions into vulnerability classes. The paper presents the structure of selected approaches and explores two indices in depth. The aim of this paper is to assess the level of agreement between selected international indicator-based assessments of vulnerability, at the level of climate regions. Results suggest that the two major global vulnerability assessments analysed largely agree on the location of the most and least vulnerable regions when these assessments are aggregated to a regional scale using the IPCC’s climate regions. The paper then discusses the robustness of the information derived and its usefulness for adaptation, disaster risk and development policies. Measuring progress towards reducing vulnerability to climate change and hazards is key for various agencies and actors in order to be able to develop informed policies and strategies for managing climate risks and to promote enabling conditions for achieving the SDGs and building resilience.


Author(s):  
Michael B. Butts ◽  
Carlo Buontempo ◽  
Jens K. Lørup ◽  
Karina Williams ◽  
Camilla Mathison ◽  
...  

Abstract. The Nile Basin is one of the most important shared basins in Africa. Managing and developing the water resources within the basin must not only address different water uses but also the trade-off between developments upstream and water use downstream, often between different countries. Furthermore, decision-makers in the region need to evaluate and implement climate adaptation measures. Previous work has shown that the Nile flows can be highly sensitive to climate change and that there is considerable uncertainty in climate projections in the region with no clear consensus as to the direction of change. Modelling current and future changes in river runoff must address a number of challenges; including the large size of the basin, the relative scarcity of data, and the corresponding dramatic variety of climatic conditions and diversity in hydrological characteristics. In this paper, we present a methodology, to support climate adaptation on a regional scale, for assessing climate change impacts and adaptation potential for floods, droughts and water scarcity within the basin.


2021 ◽  
Author(s):  
Niels Debonne

<p>Rural regions in Europe are expected to deliver a range of contributions to the Sustainable Development Goals. However, these regions are under pressure by megatrends which shape their limitations and possibilities to contribute to sustainability now and in the future. Climate change demography, and value chain dynamics are three particularly interesting megatrends, because while they are global in scope, they have distinctly heterogeneous spatial signatures. The specific patterns and manifestations of climate and environmental change, demographic dynamics, and value chain constellations at the regional scale signal the expected agricultural change in that region, as well as the possibilities the region has to offer. Therefore, studying these megatrends can provide foresight into how European agriculture is likely to evolve. Farm upscaling can for example be expected in ageing regions which are well-embedded in global value chains and for which climate change impacts are either largely positive are not overly challenging to overcome. Other combinations of megatrends may lead to land abandonment, Californization (the use of migrant labor), or the development of sustainable markets. This research quantifies and maps megatrends, and identifies hotspots of megatrend interference. It discusses the implications of various combinations of megatrends, as they emerge across the European continent.</p>


Sign in / Sign up

Export Citation Format

Share Document