Rationality, the Frobenius Endomorphism, the Lang–Steinberg Theorem

2016 ◽  
Vol 224 (1) ◽  
pp. 93-167 ◽  
Author(s):  
JAY TAYLOR

Let $\mathbf{G}$ be a connected reductive algebraic group over an algebraic closure $\overline{\mathbb{F}_{p}}$ of the finite field of prime order $p$ and let $F:\mathbf{G}\rightarrow \mathbf{G}$ be a Frobenius endomorphism with $G=\mathbf{G}^{F}$ the corresponding $\mathbb{F}_{q}$-rational structure. One of the strongest links we have between the representation theory of $G$ and the geometry of the unipotent conjugacy classes of $\mathbf{G}$ is a formula, due to Lusztig (Adv. Math. 94(2) (1992), 139–179), which decomposes Kawanaka’s Generalized Gelfand–Graev Representations (GGGRs) in terms of characteristic functions of intersection cohomology complexes defined on the closure of a unipotent class. Unfortunately, the formula given in Lusztig (Adv. Math. 94(2) (1992), 139–179) is only valid under the assumption that $p$ is large enough. In this article, we show that Lusztig’s formula for GGGRs holds under the much milder assumption that $p$ is an acceptable prime for $\mathbf{G}$ ($p$ very good is sufficient but not necessary). As an application we show that every irreducible character of $G$, respectively, character sheaf of $\mathbf{G}$, has a unique wave front set, respectively, unipotent support, whenever $p$ is good for $\mathbf{G}$.


Author(s):  
Srikanth Iyengar ◽  
Graham Leuschke ◽  
Anton Leykin ◽  
Claudia Miller ◽  
Ezra Miller ◽  
...  

1974 ◽  
Vol 54 ◽  
pp. 123-134 ◽  
Author(s):  
Hiroshi Umemura

In [7], Matsushima studied the vector bundles over a complex torus. One of his main theorems is: A vector bundle over a complex torus has a connection if and only if it is homogeneous (Theorem (2.3)). The aim of this paper is to prove the characteristic p > 0 version of this theorem. However in the characteristic p > 0 case, for any vector bundle E over a scheme defined over a field k with char, k = p, the pull back F*E of E by the Frobenius endomorphism F has a connection. Hence we have to replace the connection by the stratification (cf. (2.1.1)). Our theorem states: Let A be an abelian variety whose p-rank is equal to the dimension of A. Then a vector bundle over A has a stratification if and only if it is homogeneous (Theorem (2.5)).


Author(s):  
Thomas Polstra

Abstract It is shown that for any local strongly $F$-regular ring there exists natural number $e_0$ so that if $M$ is any finitely generated maximal Cohen–Macaulay module, then the pushforward of $M$ under the $e_0$th iterate of the Frobenius endomorphism contains a free summand. Consequently, the torsion subgroup of the divisor class group of a local strongly $F$-regular ring is finite.


2015 ◽  
Vol 92 (1) ◽  
pp. 44-51
Author(s):  
MOHAMMAD SADEK

In this paper, we find a power series expansion of the invariant differential ${\it\omega}_{E}$ of an elliptic curve $E$ defined over $\mathbb{Q}$, where $E$ is described by certain families of Weierstrass equations. In addition, we derive several congruence relations satisfied by the trace of the Frobenius endomorphism of $E$.


Author(s):  
Руслан Вячеславович Скуратовський

2012 ◽  
Vol DMTCS Proceedings vol. AQ,... (Proceedings) ◽  
Author(s):  
Florian Heigl ◽  
Clemens Heuberger

International audience Extending an idea of Suppakitpaisarn, Edahiro and Imai, a dynamic programming approach for computing digital expansions of minimal weight is transformed into an asymptotic analysis of minimal weight expansions. The minimal weight of an optimal expansion of a random input of length $\ell$ is shown to be asymptotically normally distributed under suitable conditions. After discussing the general framework, we focus on expansions to the base of $\tau$, where $\tau$ is a root of the polynomial $X^2- \mu X + 2$ for $\mu \in \{ \pm 1\}$. As the Frobenius endomorphism on a binary Koblitz curve fulfils the same equation, digit expansions to the base of this $\tau$ can be used for scalar multiplication and linear combination in elliptic curve cryptosystems over these curves.


Sign in / Sign up

Export Citation Format

Share Document