The Wind System in the Himalayas: From a Bird's-Eye View

2017 ◽  
pp. 219-228
Author(s):  
Klaus Ohlmann
Keyword(s):  
Author(s):  
Luis Ignacio Levieux ◽  
Carlos Ocampo-Martinez ◽  
Fernando A. Inthamoussou ◽  
Y Hernan De Battista

2020 ◽  
Vol 24 (03) ◽  
pp. 626-632
Author(s):  
Kamal Anoune ◽  
Azzeddine Laknizi ◽  
Mohsine Bouya ◽  
Abdelali Astito ◽  
Abdellatif Ben Abdellah

Author(s):  
John L. Schroeder

This article reviews the techniques and approaches historically employed to measure non-synoptic wind storms. While most of these efforts have originated from the atmospheric science community, the focus of this article relates to meeting the requirements of the engineering community. While the recognition of the importance of these non-synoptic wind system events is increasing, their engineering-relevant characteristics are still largely unknown. While gaps in knowledge concerning the engineering-relevant aspects of non-synoptic wind systems are plentiful, focused application of high-resolution research instrumentation offers hope to remove many of these unknowns. Future engineering-oriented measurement campaigns will likely make use of both traditional anemometry and remote sensing technologies to document the characteristics of non-synoptic wind systems.


2011 ◽  
Vol 139 (5) ◽  
pp. 1389-1409 ◽  
Author(s):  
Juerg Schmidli ◽  
Brian Billings ◽  
Fotini K. Chow ◽  
Stephan F. J. de Wekker ◽  
James Doyle ◽  
...  

Three-dimensional simulations of the daytime thermally induced valley wind system for an idealized valley–plain configuration, obtained from nine nonhydrostatic mesoscale models, are compared with special emphasis on the evolution of the along-valley wind. The models use the same initial and lateral boundary conditions, and standard parameterizations for turbulence, radiation, and land surface processes. The evolution of the mean along-valley wind (averaged over the valley cross section) is similar for all models, except for a time shift between individual models of up to 2 h and slight differences in the speed of the evolution. The analysis suggests that these differences are primarily due to differences in the simulated surface energy balance such as the dependence of the sensible heat flux on surface wind speed. Additional sensitivity experiments indicate that the evolution of the mean along-valley flow is largely independent of the choice of the dynamical core and of the turbulence parameterization scheme. The latter does, however, have a significant influence on the vertical structure of the boundary layer and of the along-valley wind. Thus, this ideal case may be useful for testing and evaluation of mesoscale numerical models with respect to land surface–atmosphere interactions and turbulence parameterizations.


Sign in / Sign up

Export Citation Format

Share Document