Quantum Origin of Cosmological Structure and Dynamical Reduction Theories

2017 ◽  
pp. 330-355
Author(s):  
Daniel Sudarsky
Keyword(s):  
Author(s):  
Robin Chhabra ◽  
M. Reza Emami ◽  
Yael Karshon

This paper presents a geometrical approach to the dynamical reduction of a class of constrained mechanical systems. The mechanical systems considered are with affine nonholonomic constraints plus a symmetry group. The dynamical equations are formulated in a Hamiltonian formalism using the Hamilton–d'Alembert equation, and constraint forces determine an affine distribution on the configuration manifold. The proposed reduction approach consists of three main steps: (1) restricting to the constrained submanifold of the phase space, (2) quotienting the constrained submanifold, and (3) identifying the quotient manifold with a cotangent bundle. Finally, as a case study, the dynamical reduction of a two-wheeled rover on a rotating disk is detailed. The symmetry group for this example is the relative configuration manifold of the rover with respect to the inertial space. The proposed approach in this paper unifies the existing reduction procedures for symmetric Hamiltonian systems with conserved momentum, and for Chaplygin systems, which are normally treated separately in the literature. Another characteristic of this approach is that although it tracks the structure of the equations in each reduction step, it does not insist on preserving the properties of the system. For example, the resulting dynamical equations may no longer correspond to a Hamiltonian system. As a result, the invariance condition of the Hamiltonian under a group action that lies at the heart of almost every reduction procedure is relaxed.


1990 ◽  
Vol 20 (11) ◽  
pp. 1271-1316 ◽  
Author(s):  
G. C. Ghirardi ◽  
R. Grassi ◽  
P. Pearle

1996 ◽  
Vol 11 (13) ◽  
pp. 1081-1093 ◽  
Author(s):  
SERGEI V. SHABANOV

We suggest a new (dynamical) Abelian projection of the lattice QCD. It contains no gauge condition imposed on gauge fields so that Gribov copying is avoided. Configurations of gauge fields that turn into monopoles in the Abelian projection can be classified in a gauge-invariant way. In the continuum limit, the theory respects the Lorentz invariance. A similar dynamical reduction of the gauge symmetry is proposed for studies of gauge-variant correlators (like a gluon propagator) in the lattice QCD. Though the procedure is harder for numerical simulations, it is free of gauge-fixing artifacts, like the Gribov horizon and copies.


Sign in / Sign up

Export Citation Format

Share Document