dynamical reduction
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 2)

H-INDEX

13
(FIVE YEARS 1)

Author(s):  
Yoshiki Kuramoto ◽  
Hiroya Nakao

An overview is given on two representative methods of dynamical reduction known as centre-manifold reduction and phase reduction . These theories are presented in a somewhat more unified fashion than the theories in the past. The target systems of reduction are coupled limit-cycle oscillators. Particular emphasis is placed on the remarkable structural similarity existing between these theories. While the two basic principles, i.e. (i) reduction of dynamical degrees of freedom and (ii) transformation of reduced evolution equation to a canonical form, are shared commonly by reduction methods in general, it is shown how these principles are incorporated into the above two reduction theories in a coherent manner. Regarding the phase reduction, a new formulation of perturbative expansion is presented for discrete populations of oscillators. The style of description is intended to be so informal that one may digest, without being bothered with technicalities, what has been done after all under the word reduction . This article is part of the theme issue ‘Coupling functions: dynamical interaction mechanisms in the physical, biological and social sciences’.


Author(s):  
Robin Chhabra ◽  
M. Reza Emami ◽  
Yael Karshon

This paper presents a geometrical approach to the dynamical reduction of a class of constrained mechanical systems. The mechanical systems considered are with affine nonholonomic constraints plus a symmetry group. The dynamical equations are formulated in a Hamiltonian formalism using the Hamilton–d'Alembert equation, and constraint forces determine an affine distribution on the configuration manifold. The proposed reduction approach consists of three main steps: (1) restricting to the constrained submanifold of the phase space, (2) quotienting the constrained submanifold, and (3) identifying the quotient manifold with a cotangent bundle. Finally, as a case study, the dynamical reduction of a two-wheeled rover on a rotating disk is detailed. The symmetry group for this example is the relative configuration manifold of the rover with respect to the inertial space. The proposed approach in this paper unifies the existing reduction procedures for symmetric Hamiltonian systems with conserved momentum, and for Chaplygin systems, which are normally treated separately in the literature. Another characteristic of this approach is that although it tracks the structure of the equations in each reduction step, it does not insist on preserving the properties of the system. For example, the resulting dynamical equations may no longer correspond to a Hamiltonian system. As a result, the invariance condition of the Hamiltonian under a group action that lies at the heart of almost every reduction procedure is relaxed.


2016 ◽  
Vol 82 (6) ◽  
Author(s):  
A. J. Brizard ◽  
P. J. Morrison ◽  
J. W. Burby ◽  
L. de Guillebon ◽  
M. Vittot

The Vlasov–Maxwell equations possess a Hamiltonian structure expressed in terms of a Hamiltonian functional and a functional bracket. In the present paper, the transformation (‘lift’) of the Vlasov–Maxwell bracket induced by the dynamical reduction of single-particle dynamics is investigated when the reduction is carried out by Lie-transform perturbation methods. The ultimate goal of this work is to provide an explicit pathway to the Hamiltonian formulations for the guiding-centre and gyrokinetic Vlasov–Maxwell equations, which have found important applications in our understanding of turbulent magnetized plasmas. Here, it is shown that the general form of the reduced Vlasov–Maxwell equations possesses a Hamiltonian structure defined in terms of a reduced Hamiltonian functional and a reduced bracket that automatically satisfies the standard bracket properties.


Sign in / Sign up

Export Citation Format

Share Document