Principles of Fibre Amplifiers and Lasers for Near-IR Spectroscopy

2021 ◽  
Author(s):  
Paul Kaufmann ◽  
Helen M. Chrzanowski ◽  
Aron Vanselow ◽  
Sven Ramelow
Keyword(s):  

Author(s):  
N. Przybilla ◽  
A. Seifahrt ◽  
K. Butler ◽  
M. F. Nieva ◽  
H.-U. Käufl ◽  
...  
Keyword(s):  

2003 ◽  
Vol 211 ◽  
pp. 119-122
Author(s):  
Frederick M. Walter ◽  
William H. Sherry ◽  
Scott J. Wolk

VRI images within the belt of Orion and the Ori OB1a association reveal a pre-main sequence locus extending to below our completeness limit of about V=21. We report here on followup JHK imaging and optical and near–IR spectroscopy of the faintest and reddest of the PMS candidates. We find that they are unreddened mid-to-late M “stars” which fall on a few million year isochrone. Masses are largely substellar, reaching as low as about 0.02 M⊙ (20 Jovian masses). The space density of the substellar objects is high.


1993 ◽  
Vol 47 (10) ◽  
pp. 1720-1727 ◽  
Author(s):  
Jie Lin ◽  
Chris W. Brown

Near-IR spectroscopy has been investigated as a universal approach for determination of physical and chemical properties of water and their functions of temperature. Principal component regression and multilinear regression models were used to correlate the spectra with the properties of water at temperatures between 5 and 65°C. Fifteen properties of water were investigated including density, refractive index, dielectric constant, relative viscosity, surface tension, vapor pressure, sound velocity, isothermal compressibility, thermal expansivity, thermal capacity, thermal conductivity, enthalpy, free energy, entropy, and ionization constant. Very good correlations were found between the near-IR predicted values of all the properties and those obtained by the traditional methods. This investigation demonstrates that these fifteen properties of water can be simultaneously determined simply by measuring a set of near-IR spectra of water, and, thus, near-IR spectroscopy can be used as a universal method for the determinations of physical and chemical properties of water. Remote sensing of the properties can be performed with the use of a fiber-optic sensor.


Sign in / Sign up

Export Citation Format

Share Document