Biomedical Measurement Systems and Data Science

2021 ◽  
Author(s):  
Michael Insana
ACTA IMEKO ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 174
Author(s):  
Imran Ahmed ◽  
Eulalia Balestrieri ◽  
Francesco Lamonaca

<p class="Abstract"><span lang="EN-US">Biomedical measurement systems (BMS) have provided new solutions for healthcare monitoring and the diagnosis of various chronic diseases. With a growing demand for BMS in the field of medical applications, researchers are focusing on advancing these systems, including Internet of Medical Things (IoMT)-based BMS, with the aim of improving bioprocesses, healthcare systems and technologies for biomedical equipment. This paper presents an overview of recent activities towards the development of IoMT-based BMS for various healthcare applications. Different methods and approaches used in the development of these systems are presented and discussed, taking into account some metrological aspects related to the requirement for accuracy, reliability and calibration. The presented IoMT-based BMS are applied to healthcare applications concerning, in particular, heart, brain and blood sugar diseases as well as internal body sound and blood pressure measurements. Finally, the paper provides a discussion about the shortcomings and challenges that need to be addressed along with some possible directions for future research activities.</span></p>


2021 ◽  
Vol 1 (5) ◽  
pp. 38-54
Author(s):  
Svetlana V. Prokopchina ◽  

The effectiveness of the functioning of cyberphysical systems is based primarily on the use of powerful methods of obtaining and processing information. The complexity of the structures and properties of cybernetic systems, as well as the conditions of their functioning, determine special requirements for measurement methods and computing, performed in such systems. As a rule, the uncertainty of CPS models, as well as the uncertainty of the influence of environmental factors and their interrelations with the properties of systems, primarily define the requirements for the intellectualization of measurements and computational processing of information. In this article, methods and tools of Bayesian intelligent measurements (BII) are proposed to ensure the effectiveness of management of cyberphysical systems under conditions of uncertainty. The concept and methodology of creating an intelligent industrial Internet of Things (IIoT) is proposed, the distinctive feature of which is the intellectualization of measurement methods and data preprocessing. For this purpose, IIoT includes an intelligent DATALAKE, which is built on the basis of a Bayesian intelligent measurement systems that implements not only measurement and data integration functions, but also management decision support. Examples of real cyberphysical systems with control based on Bayesian intelligent measuring instruments are given. The prospects of using the proposed solutions based on BII in various modern technologies based on the principles of BIG DATA, DATA SCIENCE, neural networks, IIoT, DATA MINING and others are considered.


Sensors ◽  
2014 ◽  
Vol 14 (4) ◽  
pp. 7120-7141 ◽  
Author(s):  
Fernando Seoane ◽  
Inmaculada Mohino-Herranz ◽  
Javier Ferreira ◽  
Lorena Alvarez ◽  
Ruben Buendia ◽  
...  

Author(s):  
Charles Bouveyron ◽  
Gilles Celeux ◽  
T. Brendan Murphy ◽  
Adrian E. Raftery

2012 ◽  
Vol 82 (3) ◽  
pp. 216-222 ◽  
Author(s):  
Venkatesh Iyengar ◽  
Ibrahim Elmadfa

The food safety security (FSS) concept is perceived as an early warning system for minimizing food safety (FS) breaches, and it functions in conjunction with existing FS measures. Essentially, the function of FS and FSS measures can be visualized in two parts: (i) the FS preventive measures as actions taken at the stem level, and (ii) the FSS interventions as actions taken at the root level, to enhance the impact of the implemented safety steps. In practice, along with FS, FSS also draws its support from (i) legislative directives and regulatory measures for enforcing verifiable, timely, and effective compliance; (ii) measurement systems in place for sustained quality assurance; and (iii) shared responsibility to ensure cohesion among all the stakeholders namely, policy makers, regulators, food producers, processors and distributors, and consumers. However, the functional framework of FSS differs from that of FS by way of: (i) retooling the vulnerable segments of the preventive features of existing FS measures; (ii) fine-tuning response systems to efficiently preempt the FS breaches; (iii) building a long-term nutrient and toxicant surveillance network based on validated measurement systems functioning in real time; (iv) focusing on crisp, clear, and correct communication that resonates among all the stakeholders; and (v) developing inter-disciplinary human resources to meet ever-increasing FS challenges. Important determinants of FSS include: (i) strengthening international dialogue for refining regulatory reforms and addressing emerging risks; (ii) developing innovative and strategic action points for intervention {in addition to Hazard Analysis and Critical Control Points (HACCP) procedures]; and (iii) introducing additional science-based tools such as metrology-based measurement systems.


Author(s):  
Leonard Bickman ◽  
Barry Nurcombe ◽  
Clare Townsend ◽  
Madge Belle ◽  
James Schut ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document