APPLYING STATE SPACE MODELS TO STOCHASTIC CLAIMS RESERVING

2020 ◽  
pp. 1-35
Author(s):  
Radek Hendrych ◽  
Tomas Cipra

Abstract The paper solves the loss reserving problem using Kalman recursions in linear statespace models. In particular, if one orders claims data from run-off triangles to time series with missing observations, then state space formulation can be applied for projections or interpolations of IBNR (Incurred But Not Reported) reserves. Namely, outputs of the corresponding Kalman recursion algorithms for missing or future observations can be taken as the IBNR projections. In particular, by means of such recursive procedures one can perform effectively simulations in order to estimate numerically the distribution of IBNR claims which may be very useful in terms of setting and/or monitoring of prudency level of loss reserves. Moreover, one can generalize this approach to the multivariate case of several dependent run-off triangles for correlated business lines and the outliers in claims data can be also treated effectively in this way. Results of a numerical study for several sets of claims data (univariate and multivariate ones) are presented.

2018 ◽  
Vol 14 (2) ◽  
pp. 37-49 ◽  
Author(s):  
George Bogdan Nica ◽  
Vasile Calofir ◽  
Ioan Cezar Corâci

Abstract In recent years, the pounding effect during earthquake is a subject of high significance for structural engineers. In this paper, a state space formulation of the equation of motion is used in a MATLAB code. The pounding forces are calculated using nonlinear viscoelastic impact element. The numerical study is performed on SDOF structures subjected by 1940 EL-Centro and 1977 Vrancea N-S recording. While most of the studies available in the literature are related to Newmark implicit time integration method, in this study the equations of motion in state space form are direct integrated. The time domain is chosen instead of the complex one in order to catch the nonlinear behavior of the structures. The physical nonlinear behavior of the structures is modeled according to the Force Analogy Method. The coupling of the Force Analogy Method with the state space approach conducts to an explicit time integration method. Consequently, the collision is easily checked and the pounding forces are taken into account into the equation of motion in an easier manner than in an implicit integration method. A comparison with available data in the literature is presented.


2009 ◽  
Vol 129 (12) ◽  
pp. 1187-1194 ◽  
Author(s):  
Jorge Ivan Medina Martinez ◽  
Kazushi Nakano ◽  
Kohji Higuchi

2008 ◽  
Vol 42 (6-8) ◽  
pp. 939-951 ◽  
Author(s):  
Tounsia Jamah ◽  
Rachid Mansouri ◽  
Saïd Djennoune ◽  
Maâmar Bettayeb

Sign in / Sign up

Export Citation Format

Share Document