Faculty Opinions recommendation of Inferring spatial structure from time-series data: using multivariate state-space models to detect metapopulation structure of California sea lions in the Gulf of California, Mexico.

Author(s):  
Ferdinando Boero ◽  
Fabio Bulleri
2017 ◽  
Vol 9 (4) ◽  
pp. 2036-2042 ◽  
Author(s):  
Suman Suman ◽  
Urmil Verma

Box and Jenkins’ Autoregressive Integrated Moving Average (ARIMA) models are widely used for analyzing and forecasting the time-series data. In this approach, the underlying parameters are assumed to be constant however the data in agriculture are generally collected over time and thus have the time-dependency in parameters. Such data can be analyzed using state space (SS) procedures by the application of Kalman filtering technique. The purpose of this article is to illustrate the usefulness of state space models in sugarcane yield forecasting and to pro-vide some empirical evidence for its superiority over the classical time-series analysis. ARIMA and state space models individually could provide the suitable relationship(s) to reliably forecast the sugarcane yield in Karnal, Ambala, Kurukshetra, Yamunanagar and Panipat districts of Haryana (India). However, the state space models with lower error metrics showed the superiority over ARIMA models for this empirical study. The sugarcane yield forecasts based on SS models in the districts under consideration showed good agreement with State Department of Agriculture (DOA) yields by showing 3-6 percent average absolute deviations.


The R Journal ◽  
2012 ◽  
Vol 4 (1) ◽  
pp. 11 ◽  
Author(s):  
Elizabeth,E. Holmes ◽  
Eric,J. Ward ◽  
Kellie Wills

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4112 ◽  
Author(s):  
Se-Min Lim ◽  
Hyeong-Cheol Oh ◽  
Jaein Kim ◽  
Juwon Lee ◽  
Jooyoung Park

Recently, wearable devices have become a prominent health care application domain by incorporating a growing number of sensors and adopting smart machine learning technologies. One closely related topic is the strategy of combining the wearable device technology with skill assessment, which can be used in wearable device apps for coaching and/or personal training. Particularly pertinent to skill assessment based on high-dimensional time series data from wearable sensors is classifying whether a player is an expert or a beginner, which skills the player is exercising, and extracting some low-dimensional representations useful for coaching. In this paper, we present a deep learning-based coaching assistant method, which can provide useful information in supporting table tennis practice. Our method uses a combination of LSTM (Long short-term memory) with a deep state space model and probabilistic inference. More precisely, we use the expressive power of LSTM when handling high-dimensional time series data, and state space model and probabilistic inference to extract low-dimensional latent representations useful for coaching. Experimental results show that our method can yield promising results for characterizing high-dimensional time series patterns and for providing useful information when working with wearable IMU (Inertial measurement unit) sensors for table tennis coaching.


2015 ◽  
Vol 51 (3) ◽  
pp. 200-218 ◽  
Author(s):  
Carissa Sparkes ◽  
Leonard M. Lye ◽  
Susan Richter

Time series data such as monthly stream flows can be modelled using time series methods and then used to simulate or forecast flows for short term planning. Two methods of time series modelling were reviewed and compared: the well-known auto regressive moving average (ARMA) method and the state-space time-series (SSTS) method. ARMA has been used in hydrology to model and simulate flows with good results and is widely accepted for this purpose. SSTS modelling is a more recently developed method that is relatively unused for hydrologic modelling. This paper focuses on modelling the stream flows from basins of different sizes using these two time series modelling methods and comparing the results. Three rivers in Labrador and South-East Quebec were modelled: the Romaine, Ugjoktok and Alexis Rivers. Both models were compared for accuracy of prediction, ease of software use and simplicity of model to determine the preferred time series methodology approach for modelling these rivers. The SSTS was considered very easy to use but model diagnostics were found to require a high level of statistical understanding. Ultimately, the ARMA method was determined to be the better method for the typical engineer to use, considering the diagnostics were simple and the monthly flows could be easily simulated to verify results.


Risks ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 198
Author(s):  
Nataliya Chukhrova ◽  
Arne Johannssen

Often, the claims reserves exceed the available equity of non-life insurance companies and a change in the claims reserves by a small percentage has a large impact on the annual accounts. Therefore, it is of vital importance for any non-life insurer to handle claims reserving appropriately. Although claims data are time series data, the majority of the proposed (stochastic) claims reserving methods is not based on time series models. Among the time series models, state space models combined with Kalman filter learning algorithms have proven to be very advantageous as they provide high flexibility in modeling and an accurate detection of the temporal dynamics of a system. Against this backdrop, this paper aims to provide a comprehensive review of stochastic claims reserving methods that have been developed and analyzed in the context of state space representations. For this purpose, relevant articles are collected and categorized, and the contents are explained in detail and subjected to a conceptual comparison.


2019 ◽  
Vol 11 (3) ◽  
pp. 661-665 ◽  
Author(s):  
Ekta Hooda ◽  
Urmil Verma

Unlike classical regression analysis, the state space models have time-dependent parameters and provide a flexible class of dynamic and structural time series models. The unobserved component model (UCM) is a special type of state space models widely used to analyze and forecast time series. The present investigation has been carried out to study the trend of sugarcane(gur) yield in five districts (Ambala, Karnal, Panipat, Yamunanagar and Kurukshetra) of Haryana state using the unobserved component models with level, trend and irregular components. For this purpose, the time series data on sugarcane yield from 1966-67 to 2016-17 of Ambala and Karnal, 1971-72 to 2016-17 of Kurukshetra and 1980-81 to 2016-17 of Panipat and Yamunanagar districts have been used.   For all the districts, the irregular component was found to be highly significant (p=0.01) while both level and trend component variances were observed non-significant. Significance analysis of the individual component(s) has also been performed for possible dropping of the level and trend components by setting their variances equal to zero. The state space models may be effectively used pertaining to Indian agriculture data, as it takes into account the time dependency of the underlying parameters which may further enhance the predictive accuracy of the most popularly used ARIMA models with parameter constancy. Moreover, the unobserved component model is capable of handling both stationary as well as non-stationary time series and thus found more suitable for sugarcane yield modeling which is a trended yield (i.e. non-stationary in nature).


2017 ◽  
Vol 28 (14) ◽  
pp. 1941-1956 ◽  
Author(s):  
Mehrisadat Makki Alamdari ◽  
Bijan Samali ◽  
Jianchun Li ◽  
Ye Lu ◽  
Samir Mustapha

We present a time-series-based algorithm to identify structural damage in the structure. The method is in the context of non-model-based approaches; hence, it eliminates the need of any representative numerical model of the structure to be built. The method starts by partitioning the state space into a finite number of subsets which are mutually exclusive and exhaustive and each subset is identified by a distinct symbol. Partitioning is performed based on a maximum entropy approach which takes into account the sparsity and distribution of information in the time series. After constructing the symbol space, the time series data are uniquely transformed from the state space into the constructed symbol space to create the symbol sequences. Symbol sequences are the simplified abstractions of the complex system and describe the evolution of the system. Each symbol sequence is statistically characterized by its entropy which is obtained based on the probability of occurrence of the symbols in the sequence. As a consequence of damage occurrence, the entropy of the symbol sequences changes; this change is implemented to define a damage indicative feature. The method shows promising results using data from two experimental case studies subject to varying excitation. The first specimen is a reinforced concrete jack arch which replicates one of the major structural components of the Sydney Harbor Bridge and the second specimen is a three-story frame structure model which has been tested at Los Alamos National Laboratory. The method not only could successfully identify the presence of damage but also has potential to localize it.


Sign in / Sign up

Export Citation Format

Share Document