Electrostatic component/component instabilities in uniform plasmas

2020 ◽  
Author(s):  
Andrew J. McNeece ◽  
Margaret L. Kelty ◽  
Alexander S. Filatov ◽  
John Anderson

<div>Local electric fields have recently been investigated for optimizing reactivity in synthetic systems. However, disentangling the relative contributions of inductive (through-bond) and electrostatic (through-space) effects in molecular systems has been a long-standing challenge. To understand the interplay of these effects and leverage electrostatic influences for enhanced reactivity, we have synthesized a distally charged phosphine, Ph<sub>2</sub>PCH<sub>2</sub>BF<sub>3</sub><sup>−</sup>, and studied the effect of the charged trifluoroborate group on its donor properties and reactivity. This charged phosphine displays solvent-dependent changes in donor strength as measured by the <i>J</i><sub>P-Se</sub> of the corresponding phosphine selenide. The variation with solvent dielectric illustrates a significant electrostatic component to the donor strength. Computations further support the importance of electrostatic contributions and highlight the effect of charge position and orientation. Finally, this charged group also greatly accelerates C–F oxidative addition reactivity in Ni complexes, experimentally</div><div>verifying recent theoretical predictions. These results show that covalently bound charged functionalities can exert a significant electrostatic influence even under common solution phase reaction conditions.</div>


2019 ◽  
Vol 48 (19) ◽  
pp. 6328-6332 ◽  
Author(s):  
Dušan P. Malenov ◽  
Snežana D. Zarić

Stacking interactions of metal–chelate rings are strong due to very strong electrostatic energy component.


2004 ◽  
Vol 76 (7-8) ◽  
pp. 1509-1520 ◽  
Author(s):  
Ferdous Khan ◽  
A.-M. Hor ◽  
P. R. Sundararajan

Pai and coworkers have reported that the charge carrier mobility of the hole transport molecule N,N'-diphenyl-N,N'-bis(3-methylphenyl)-[1,1'-biphenyl]-4,4'-diamine (TPD) is higher with polystyrene (PS) as the host polymer, in comparison to bisphenol A polycarbonate (PC) as the binder. It was proposed that the enhanced interaction of TPD with PC and the effect of the carbonyl dipole are responsible for such a phenomenon.We present a morphological study that lends support to the above proposal. The morphology and thermal behavior of TPD/polystyrene (TPD/PS) composites have been investigated as a binary solid solution and compared with that of the TPD/polycarbonate (TPD/PC) pair. The depression of the glass-transition temperature (Tg ) with the concentration of TPD is more pronounced with PC than with PS. On the other hand, the recovery of the Tg upon annealing is significantly higher in the case of PS. Fourier transform infrared (FTIR) study shows that the molecular- level interaction between TPD and PS is not as significant as in the case PC. Molecular modeling based on the MM+ molecular mechanics calculations also shows an electrostatic component to the total interaction energy in the case of PC. In addition, small crystals are present in the as-prepared films of TPD/PS that, upon chaining, could enhance the charge carrier mobility. Thus, it is suggested that the enhanced interaction between TPD and PC as well as the small crystals of TPD in PS are responsible for the higher mobility in the latter. PS serves as an inert host, while there are specific interactions between TPD and PC.


2008 ◽  
Vol 1 (1) ◽  
pp. 2 ◽  
Author(s):  
Kemper Talley ◽  
Carmen Ng ◽  
Michael Shoppell ◽  
Petras Kundrotas ◽  
Emil Alexov

Author(s):  
Acharya Balkrishna ◽  
SUBARNA POKHREL ◽  
Jagdeep Singh ◽  
Anurag Varshney

Abstract Background Newly emerged COVID-19 has been shown to engage the host cell ACE2 through its spike protein receptor binding domain (RBD). Here we show that natural phytochemical from a medicinal herb, Withania somnifera, have distinct effects on viral RBD and host ACE2 receptor complex. Methods We employed molecular docking to screen thousands of phytochemicals against the ACE2-RBD complex, performed molecular dynamics (MD) simulation, and estimated the electrostatic component of binding free energy, along with the computation of salt bridge electrostatics. Results We report that W. somnifera compound, Withanone, docked very well in the binding interface of AEC2-RBD complex, and was found to move slightly towards the interface centre on simulation. Withanone significantly decreased electrostatic component of binding free energies of ACE2-RBD complex. Two salt bridges were also identified at the interface; incorporation of Withanone destabilized these salt bridges and decreased their occupancies. We postulate, such an interruption of electrostatic interactions between the RBD and ACE2 would block or weaken COVID-19 entry and its subsequent infectivity. Conclusion Our data, for the first time, show that natural phytochemicals could well be the viable options for controlling COVID-19 entry into host cells, and W. somnifera may be the first choice of herbs in these directions to curb the COVID-19 infectivity.


2019 ◽  
Author(s):  
Nathaniel Miller ◽  
Haley Grimm ◽  
Seth Horne ◽  
Geoffrey Hutchison

We report a new methodology for the electromechanical characterization of organic monolayers based on the implementation of dual AC resonance tracking piezo force microscopy (DART-PFM) combined with a sweep of an applied DC field under a fixed AC field. This experimental design allows calibration of the electrostatic component of the tip response and enables the use of low spring constant levers in the measurement. Moreover, the technique is shown to determine both positive and negative piezo response. The successful decoupling of the electrostatic component from the mechanical response will enable more quantitative electromechanical characterization of molecular and biomaterials and should generate new design principles for soft bio-compatible piezoactive materials. To highlight the applicability, our new methodology was used to successfully characterize the piezoelectric coefficient (d<sub>33</sub>) of a variety of piezoactive materials, including self-assembled monolayers made of small molecules (dodecane thiol, mercaptoundecanoic acid) or macromolecules (peptides, peptoids), as well as a variety of inorganic materials, including lead zirconate titanate [PZT], quartz, and periodically poled lithium niobate [PPLN]. Due to high differential capacitance, the soft organic monolayers demonstrated exceedingly large electromechanical response (as high as 250 pm/V) but smaller d<sub>33</sub>piezocoefficients. Finally, we find that the capacitive electrostatic response of the organic monolayers studied are significantly larger than conventional inorganic piezoelectric materials (e.g., PZT, PPLN, quartz), suggesting organic electromechanical materials applications can successfully draw from both piezo and electrostatic responses.


Author(s):  
Acharya Balkrishna ◽  
Subarna Pokhrel ◽  
Anurag Varshney

Background: SARS-CoV-2 has been shown to bind the host cell ACE2 receptor through its spike protein receptor binding domain (RBD), required for its entry into the host cells. Objective: We have screened phytocompounds from a medicinal herb, Tinospora cordifolia, for their capacities to interrupt the viral RBD and host ACE2 interactions. Method: We employed molecular docking to screen phytocompounds in T. cordifolia against the ACE2-RBD complex, performed molecular dynamics (MD) simulation, and estimated the electrostatic component of binding free energy. Results: ‘Tinocordiside’ docked very well at the center of the interface of ACE2-RBD complex, and was found to be well stabilized during MD simulation. Tinocordiside incorporation significantly decreased electrostatic component of binding free energies of ACE2-RBD complex (23.5 and 17.10 kcal/mol in the trajectories without or with the ligand, respectively). As the basal rate constant of protein association is in the order of 5, (105 to 106 M-1 S-1 ), there might be no big conformational change or loop reorganization, but involves only local conformational change typically observed in diffusion-controlled association. Taken together, the increase in global flexibility of the complex, clearly indicates the start of unbinding process of the complex. Conclusion: It indicates that such an interruption of electrostatic interactions between the RBD and ACE2, and the increase in global flexibility of the complex, would weaken or block SARS-CoV-2 entry and its subsequent infectivity. We postulate that natural phytochemicals like Tinocordiside could be the viable options for controlling SARS-CoV-2 contagion and its entry into host cells.


Sign in / Sign up

Export Citation Format

Share Document